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ABSTRACT
Learning models of user behaviour is an important problem that
is broadly applicable across many application domains requiring
human-robot interaction. In this work we show that it is possi-
ble to learn a generative model for distinct user behavioral types,
extracted from human demonstrations, by enforcing clustering
of preferred task solutions within the latent space. We use this
model to differentiate between user types and to find cases with
overlapping solutions. Moreover, we can alter an initially guessed
solution to satisfy the preferences that constitute a particular user
type by backpropagating through the learned differentiable model.
An advantage of structuring generative models in this way is that
it allows us to extract causal relationships between symbols that
might form part of the user’s specification of the task, as mani-
fested in the demonstrations. We show that the proposed method
is capable of correctly distinguishing between three user types,
who differ in degrees of cautiousness in their motion, while per-
forming the task of moving objects with a kinesthetically driven
robot in a tabletop environment. Our method successfully identifies
the correct type, within the specified time, in 99% [97.8 − 99.8] of
the cases, which outperforms an IRL baseline. We also show that
our proposed method correctly changes a default trajectory to one
satisfying a particular user specification even with unseen objects.
The resulting trajectory is shown to be directly implementable on
a PR2 humanoid robot completing the same task.
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1 INTRODUCTION
As we move from robots dedicated to specific pre-programmed
tasks to more general purpose tasks, there is a need for easy re-
programmability of these robots. A promising approach to such easy
re-programming is Learning from Demonstration, i.e., by enabling
the robot to mimic behaviors shown to it by a human expert—
Figure. 1.

With such a setup we can abstract away from having to handcraft
rules and allow the robot to learn by itself, including the specifica-
tions the teacher has used during the demonstration. Often some
of these innate preferences are not explicitly articulated and are
mostly biases resulting from experiences with other unrelated tasks
sharing parallel environmental corpora - Figure. 2.1. The ability
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Figure 1: Example setup - task is to return the pepper shaker
to its original location—next to the salt shaker. Deciding
which objects to avoidwhen performing the task can be seen
as conditioning on the user specifications, implicitly given
during a demonstration phase.

to notice, understand and reason causally about these deviations,
whilst learning to perform the shown task is of significant interest.

Similarly, other methods for Learning fromDemonstration as dis-
cussed by Argall et al. [1] andWirth et al. [24] in the Reinforcement
Learning domain are focused on finding a general mapping from
observed state to an action, thus modeling the system or attempting
to capture the high-level user intentions into a plan. The resulting
policies are not generally used as generative models. As highlighted
by Sünderhauf et al. [22] one of the fundamental challenges with
robotics is the ability to reason about the environment, beyond a
state-action mapping.

Thus, when receiving a positive demonstration, we should aim
to understand the causal reasons differentiating it from a non-
preferential one, rather than merely mimicking the particular tra-
jectory. When people demonstrate a concept associated with a
movement, they rarely mean one singleton trajectory alone. In-
stead, that instance is an element of a set of trajectories that share
particular features. In other words, we want to find groups of tra-
jectories with similar characteristics that may be represented as
clusters in a suitable space. We are interested in learning these clus-
ters so that subsequent new trajectories can be classified according
to whether they are good representatives of the class of intended
feasible behaviors.

It is often the case that in problems that exhibit great flexibility
in possible solutions, different experts may generate solutions that
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Figure 2: (1) Demonstrations that satisfy the user task speci-
fication maintain a distance from fragile objects (i.e. a wine
glass), or fail to satisfy the specification by moving over
sharp items. (2) An environment can have multiple clusters
of valid trajectories in the latent space, conditioned on user
type. (3) The validity of trajectories can be represented as a
causal model. Whether a trajectory is part of a cluster v is
conditioned on the specific path zθ , the environment zI , and
the specification s.

are part of different clusters - Figure. 2.2. In cases where we naively
attempt to perform statistical analysis, we may end up collapsing
to a single mode or merging the modes in a manner that doesn’t
entirely reflect the underlying semantics (e.g., averaging trajectories
for going left/right around an object).

We present a method for introspecting in the latent space of the
model which allows us to relax some of the assumptions illustrated
above and more concretely to:

• find varied solutions to a task by sampling a learned genera-
tive model, conditioned on a particular user specification.

• backpropagate through the model to change an initially
guessed solution towards an optimal one with respect to
the user specification of the task.

• counterfactually reason about the underlying feature prefer-
ences implicit in the demonstration, given key environmen-
tal features, and to build a causal model describing this.

Our proposed method relies on generating a latent space from
environmental observations with the demonstrator’s trajectories.
This teacher’s positive and negative examples are used as a guide
for estimating the specification and validity of the trajectory pa-
rameterization.

2 RELATEDWORK
2.1 Learning from Demonstration
Learning from demonstration involves a variety of different meth-
ods for approximating the policy. In some related work, the state
space is partitioned and the problem is viewed as one of classifica-
tion. This allows for the environment state to be in direct control of
the robot and to command its discrete actions - using Neural Net-
works (JMatari’c [12]), BayesianNetworks (Inamura [11]), Gaussian
Mixture Models (Chernova and Veloso [4]). Alternatively, it can be
used to classify the current step in a high-level plan Thomaz and
Breazeal [23] and execute predetermined low-level control.

In cases where a continuous action space is preferred, regressing
from the observation space can be achieved by methods like Locally
Weighted Regression Cleveland and Loader [5].

Roboticists e.g., Sünderhauf et al. [22], have long held the view
that reasoning as part of planning is dependent on reasoning about
objects, semantics and their geometric manifestations. This is based
on the view that structure within the demonstration should be
exploited to better ground symbols between modalities and to the
plan.

One way to learn such latent structure can be in the form of a
reward function through the usage of Inverse Reinforcement Learn-
ing methods as presented by Ng et al. [18], Zhifei andMeng Joo [25].
However, it is not always clear that the underlying reward, which
an expert may have used, is entirely re-constructable or even if it
can be sufficiently approximated. Alternatively, preference-based
reinforcement learning (PbRL), Wirth et al. [24], offers methods
whose focus lies in learning from non-numeric rewards, directly
from the guidance of a demonstrator. Such methods are particularly
useful for problems with high-dimensional domains, e.g. robot-
ics - Jain et al. [13, 14], where a numeric reward (unless highly
shaped) might not be able to capture all semantic subtleties and
variations contained in the expert’s demonstration. Thus, in the
context of PbRL, the method we propose learns a user specification
model using user-guided exploration and trajectory preferences as
a feedback mechanism, using definitions from Wirth et al. [24].

2.2 Causality and State Representation
The variability of environmental factors makes it hard to build sys-
tems relying only on correlation data statistics for specifying their
state space. Methods that rely on causality, Harradon et al. [8], Pearl
[19], and learning the cause and effect structure, Rojas-Carulla et al.
[21], are much better suited to support the reasoning capabilities for
transferring core knowledge between situations. Interacting with
the environment allows robots to perform manipulations that can
convey new information to update the observational distribution
or change their surrounding and in effect perform interventions
within the world.

Learning sufficient state features has been highlighted by Argall
et al. [1] as a future challenge for the LfD community. The problem
of learning disentangled representations aims to generate a good
composition of a latent space, separating the different modes of
variation within the data. Chen et al. [2], Higgins et al. [9] have
shown promising improvements in disentangling of the latent space
with minimal or no assumption by manipulating the Kullback -
Leibler divergence loss of a variational auto-encoder. Denton and
Birodkar [6] show how the modes of variation for content and
temporal structure should be separated and can be extracted to
improve the quality of the next frame video prediction task if the
temporal information is added as a learning constraint. While the
disentangled representations may not directly correspond to the
factors defining action choices, Johnson et al. [15] adds a factor
graph and composes latent graphical models with neural network
observation likelihoods.

The ability to manipulate the latent space and separate variability
as well as obtain explanation about behavior is also of interest to the
interpretable machine learning field, as highlighted by Doshi-Velez
and Kim [7].
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3 PROBLEM FORMULATION
In this work, we assume that the human expert and robotic agent
share multiple static tabletop environments where both the expert
and the agent can fully observe the world and can interact with
an object being manipulated. The agent can extract RGB images of
static scenes and can also be kinesthetically driven while a demon-
stration is performed. The task at hand is to move an object held
by the agent from an initial position pinit to a final position pf on
the table, while abiding by certain user-specific constraints. Both
pinit and pf ∈ RP . The user constraints are determined by the
demonstrator’s type s , where s ∈ S = {s1, . . . , sn } for n user types.

Let D = {{x1,v1}, . . . , {xN ,vN }} be a set of N expert demon-
strations, where xi = {I , tr si }, I ∈ R

M is the tabletop scene, tr si is
the trajectory and vi is a binary label denoting the validity of the
trajectory with respect to the user type s . Each trajectory tr si is a se-
quence of points {p0, . . . ,pTi }, where p0 = pinit and pTi = pf . The
length of the sequences is not constrained—i.e. T is not necessarily
the same for different trajectories.

The learning task is to project each I ∈ RM into ZI ∈ RK ,
ZI = E(I ), and tr si ∈ RPTi into Zθ ∈ RL , Zθ = Bz(tr si ), K ≪ M ,
L ≪ PTi . Both ZI and Zθ are used in order to predict the validity v̂i
of the trajectory tr si with respect to the user type s . With optimally-
performing agent, v̂i ≡ vi . For more details see Figure 3.

In order to alter an initial trajectory, we can find the partial
derivative of model with respect to the trajectory parameters with
the model conditioned on a specific user type,

∆ =
∂Cs (z |v̂ = 1)
∂zθ

We can take a gradient step ∆ and re-evaluate. Upon satisfactory
outcome, we can reproject back zθ to a robotic executable trajectory
tr s = Bz−1(zθ ).

The main capability we want from our model is to structure the
latent space in a way that would not only allow us to distinguish
between trajectories conforming and not to the user specifications
and in turn generate good trajectories, but also to maintain variabil-
ity in order to estimate the causal link between the symbols within
the world and the validity of a trajectory, given some specification.

4 SPECIFICATION MODEL
Weuse theDeepVariational Auto-Encoder Framework—see Kingma
and Welling [16]—as a base architecture. The full model consists of
a convolutional encoder network qϕ , parametrised by ϕ, a decon-
volutional decoder network pψ , parametrised byψ , and a classifier
network C , comprised of a set of fully-connected layers. The en-
coder network is used to compress the world representation I to a
latent space ZI , disjoint from the parameterization of the trajecto-
ries Zθ . The full latent space is modeled as the concatenation of the
world space and trajectory space Z = ZI ∪ Zθ as seen on Figure. 3.

Parameters—α , β ,γ—are added to the three terms of the over-
all loss function—see Equation 1—so that their importance during
learning can be leveraged. In order to better shape the latent space
and to coerce the encoder to be more efficient, the Kullback-Leibler
divergence loss term is scaled by a β parameter, as in Higgins et al.
[9]. By tuning its value we can ensure that the distribution of the
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Figure 3: Specificationmodel architecture. The environmen-
tal image I, I ∈ R100×100×3, is passed through an Encoder-
Decoder Convolutional Network, with a 16− 8− 4 3x3 convo-
lutions, followed by fully connected layer, to create a com-
pressed representation ZI ,ZI ∈ R15. It is passed along with
the trajectory parameterization Zθ ,Zθ ∈ R2 through a 3-
layer fully connected classifier network that checks the va-
lidity of the trajectoryCs (z)with respect to the specification
s.

latent projections in ZI do not diverge from a prior isotropic nor-
mal distribution and thus influence the amount of disentanglement
achieved in the latent space. A fully disentangled latent space has
factorised latent dimensions—i.e. each latent dimension encodes
a single data-generative factor of variation. It is assumed that the
factors are independent of each other. For example, one dimension
would be responsible for encoding the X position of an objectin the
scene, another for the Y position, third for the color, etc. Higgins
et al. [10] and Chen et al. [3] argue that such low-dimensional dis-
entangled representations, learned from high-dimensional sensory
input, can be a better foundation for performing separate tasks - tra-
jectory classification in our case. Moreover, we additionally add a
binary cross-entropy loss (scaled by γ ) associated with the ability of
the full latent space Z to predict whether a trajectory tr s associated
a world I satisfies the semantics of the user type s - v̂ . We hypothe-
sise that by backpropagating the classification error signal through
ZI would additionally enforce the encoder network to not only
learn factorised latent representations that ease reconstruction, but
also trajectory classification. The full loss can be seen in Eq. 1.

min
ψ ,ϕ,C

L(ψ ,ϕ; I ,zI , zθ ,v) = (1)

− αEqϕ (zI |I )(loдpψ (I |zI ))

+ βDKL(qϕ (zI |I )| |pψ (zI ))

− γ [v log(C(z)) + (1 −v) log(1 −C(z))]

The values for the three coefficients were empirically chosen in
a manner such that none of the separate loss terms overwhelms
the gradient updates while optimising L.
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5 CAUSAL MODELING
Naturally, our causal understanding of the environment can only
be examined through the limited set of symbols, O , that we can
comprehend about the world. In this part, we work under the as-
sumption that an object detector is available for these objects (as
the focus of this work is on elucidating the effect of these objects on
the trajectories rather than on the lower level computer vision task
of object detection per se). Given this, we can construct specific
world configurations to test a causal model and use the above-
learned specification model as a surrogate to inspect the validity of
proposed trajectories.

If we perform a search in the latent space zθ , we can find bound-
aries of trajectory validity. We can intervene and counterfactually
alter parameters of the environment and specifications and see the
changes of the trajectory boundaries. By looking at the difference of
boundaries in cases where we can test for associational reasoning,
we can causally infer whether

• the different specifications show alternate valid trajectories
• a particular user specification reacts to the existence of a
specific symbol within the world.

.

...

zθ zI s

v

T I

o1 oK

Figure 4: The environment, compressed to zI , is composed
of objects (o1, ..,oK ). A trajectory T is parameterized by zθ ,
which alongside the factors zI and user specification s are
part of the specification model.

5.1 Specification Model Differences
We are interested in establishing the causal relationship within the
specification model as shown on Figure. 4. We define our Structural
Causal Model (SCM), following the notation of Peters et al. [20] as

C := (S, PN), S = {X j := fj (PAj ,Nj )}

where nodes X = {Zθ ,ZI , S,V } and PAj = {X1,X2, ..Xn }\{X j }.
Given some observation x, we can define a counterfactual SCM
CX=x := (S, PC |X=xN ) , where PC |X=xN := PN |X=x

We can choose a particular user specification s ∼ p(S), s , sx
and use the specification model to confirm that the different speci-
fication models behave differently given a set of trajectories and
scenes, i.e. the causal link s → v exists by showing:

E
[
P
C |X = x
v

]
, E

[
P
C |X = x;do(S := s)
v

]
(2)

5.2 Symbol Influence on Specification Models
We want to measure the response of the specification models of
intervening in the scene and placing additional symbols within the
world. We use the symbol types O = {o1, ..,ok } as described in
Section. 6.1. To accomplish this, for each symbol within the set we
augment the scene I , part of the observation x with symbol o, such
that Inew = I ∪ o. If we observe that the entailed distributions of
P
C |X=x;do(ZI :=zInew )
v changes i.e.

E
[
P
C |X = x
v

]
, E

[
P
C |X = x;do(ZI := zInew )
v

]
(3)

then the introduced object o has a causal effect upon the validity
of trajectories conditioned upon the task specification sx.

We investigate the intervention of all symbol types permutated
with all task specifications.

6 EXPERIMENTAL SETUP
6.1 Dataset

Figure 5: Items used for the generation of the training
(green) and test (red) scenes.

The environment chosen for the experiment consists of a top
down view of a tabletop on which a collection of items, O={utensils,
plates, bows, glasses} - Figure. 5, usually found in a kitchen environ-
ment, have been randomly distributed. The task that the demon-
strator has to accomplish is to kinestetically move a robotic arm
gently holding a pepper shaker from one end on the table to the
other (pinit =bottom left, pf =top right) by demonstrating a trajec-
tory, whilst following their human preferences around the set of
objects —see Figure 6. The demonstrators are split into user types
S , S = {care f ul , normal , aддressive} based on the trajectory in-
teraction with the environment. The semantics behind the types
are as follows: the careful user tries to avoid going near any objects
while carrying the pepper shaker, the normal user tries to avoid
only cups and the aggressive user avoids nothing and tries to finish
the task by taking the shortest path from pinit to pf .

The agent observes the tabletop world and the user demonstra-
tions in the form of 100x100 pixel RGB images I , I ∈ R100×100×3. The
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Figure 6: Sample images used to represent example scenes.
pinit and pf are as defined in Section 3. Blue blobs repre-
sent potential obstacles in the scene, which some user types
might want to avoid, and are only drawn for illustrative pur-
poses.

demonstrator—see Figure. 1—is assigned one of the types in S , has to
produce a number of possible trajectories, some that satisfy the se-
mantics of their type and some that break it - Figure. 2.1. As specified
in Section 3, each trajectory tr s is a sequence if points {p0, . . . ,pT },
where p0 = pinit and pTi = pf . Each point pj , j ∈ {0, . . . ,T } rep-
resents the 3D position of the agent’s end effector with respect to
a predefined origin. However, all kinesthetic demonstrations are
performed in a 2D (XY) plane above the table, meaning that the
third coordinate of each point pj carries no information (P = 2).
An efficient way to describe the trajectories is by using a Bezier
curve representation— see Mortenson [17]. The parameterization
of a single trajectory becomes the 2D location of the central control
point parametrized by θ , together with pinit and pf . However, the
initial and final points for each trajectory are the same and we can
omit them. Thus, with respect to the formulations in Section 3 L = 2
and Zθ ∈ R2.

In total, for each user type s ∈ S 20 scenes are used for train-
ing, with 10 trajectories per scene. The relationship between the
number of trajectories per scene and the model’s performance is
explored in Section 7. For evaluation purposes additional 20 scenes

are generated, using a set of new items that have not been seen
before—see Figure. 5.

6.2 Evaluation
We evaluate the performance of the model by its ability to correctly
predict the validity of a trajectorywith a particular specification.We
perform an ablation study with the full model (α , 0, β , 0,γ , 0,),
AE model (β = 0), and classifier (α = 0, β = 0). We investigate how
the performance of the model over unseen trajectories varies with
a different number of trajectories used for training per scene. We
randomize the data used for training 10 times and report the mean.

As a baseline we use an IRL model rs (p, I ), such that the policy
π producing a trajectory tr s that is optimal wrt:

argmax
tr s

N∑
i=0

rs (pi , I )

Additionally, we test the ability of the learned model to alter an
initially suggested trajectory to a valid representative of the user
specification. We assess this on the test set with completely novel
objects by taking 30 gradient steps and marking the validity of the
resulting trajectory.

We perform a causal analysis of the model with respect to the
different user specifications and evaluate the difference in their
expected behavior. Additionally, we intervene by augmenting the
images to include specific symbols and evaluate the difference of
the expectation of their entailed distribution. This highlights how
the different specifications react differently to certain symbols.

Figure 7: The accuracy of the different models with respect
the number of trajectories used within a scene. The lines in-
dicate the mean accuracy with 10 different randomizations
of the data. As thenumber of trajectories per scene increases,
the performance of all models improves, but especially with
a lower number of trajectories, our full model shows the
biggest gains.
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(a) Careful (b) Normal (c) Aggressive

Figure 8: Sampling of the latent trajectory space—Zθ—of the preference model with different specifications. It can be observed
how for the same region in the latent trajectory space—e.g. bottom right—the different user types have different validity values
for the same trajectory—e.g. normal vs. careful user types around the cutlery and glass.

7 RESULTS
In this section we illustrate how modeling the specifications of
a human demonstrator’s trajectories, in a table-top manipulation
scenario within a neural network model, can be later used to infer
causal links through a set of known features about the environment.

7.1 Model Accuracy
We show the accuracy the specification model on Figure. 7 and on
our website1. Changing the number of trajectories shown within a
scene has the highest influence on the performance ranging from
72%[67.3 − 77.5] for a single trajectory to 99%[97.8 − 99.8] 2 when
using 9. The results illustrate that the models benefit from having
an auto-encoder component to represent the latent space. However,
they asymptotically approach perfect behavior as the number of tra-
jectories per scene increases. Interestingly, the IRL baseline shows
it needs much more information in order to create an appropriate
policy.

If we look into the latent space of the trajectory — Figure. 8
— we can see that the trajectory preferences have clustered and
there exists an overlap between the different model specifications.
It also illustrates what the models’ specifications can show about
the validity of the trajectory.

1Anonymous website on https://sites.google.com/view/learnspecifications
2The numbers in brackets indicate the first and third quartile.

7.2 Trajectory Backpropagation
We can use the learned specification model and perturb an initially
suggested trajectory to suit the different user types by backpropa-
gating through it and taking gradient steps within the trajectory
latent space.

Based on the unseen object test scenes, the models were evalu-
ated under the different specifications and the results can be found
in Table. 1. Individual trajectory movements can be seen in Figure. 9
and in the Appendix.

The first row of Figure. 9 shows that the careful user type steering
away from both the cup and bowl/cutlery, whereas in the normal
user type, the model prefers to stay as far away from the cup as pos-
sible, ignoring the bowl. The model conditioned on the aggressive
user type does not alter its preference of the trajectory, regardless
of it passing through objects. The second row illustrates a situation,
where the careful model shifts the trajectory to give more room to
the cutlery, in contrast to the normal case. The final row highlights
a situation, where the resulting trajectories vastly differ depending
on the conditioning of the specification model.

7.3 Causal Analysis
On Table. 2 we can see the mean of the entailed distribution de-
pending on the type of intervention performed. The results of Eq. 2
can be seen in the first column. It shows the likelihood of validity

https://sites.google.com/view/learnspecifications
https://sites.google.com/view/learnspecifications
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(a) Careful (b) Normal (c) Aggressive

Figure 9: An initial trajectory (seen in dark blue) is used as a base solution to the task for difference scenes—rows 1, 2, 3.
Furthermore, the parametrisation zθ for each initial trajectory is continuously updated so that it better abides by the semantics
of the different user specifications— columns a,b,c. It can be seen that as the gradient steps in Zθ are taken, the resulting
intermediate trajectories are shifted to accommodate the preference of the model until the final trajectory (light blue) is
reached. Color change from dark to light blue designates progressive gradient steps.

of a trajectory given a set of observations. Conditioning on the
different types of user specifications, we can see that the validity
increases, meaning a higher number of possible solutions can be
identified. The variety of solutions can be seen in Figure. 8. This
naturally follows the human assumption about the possible ways

to solve a task with different degrees of carefulness. In the case of
the final user type, all of the proposed trajectories have successfully
solved the problem.

In the subsequent columns on Table. 2 we can see the mean
probability of validity for when we intervene in the world and
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Table 1: The success rate of perturbing a non valid trajectory
into a valid one under different user specifications.

User Types Success rate
Careful 75%
Normal 95%

Aggressive 100%

position randomly a symbol of different type within the scene. By
comparing the value with the ones in the first column, we can
assess the inequality in Eq. 3.

Table 2: The respective distributions of validity p(v|X=x, S=s)
with different user types depending on the intervention per-
formed for a random trajectory to be valid under the user
specification. The first column shows the mean distribution
over the information obtained over the observations. The
cells in bold indicate significant change with respect to the
no intervention column.

User Types No Intervention Bowl Plate Cutlery Glass
Safe 0.43 0.27 0.28 0.31 0.30

Normal 0.62 0.62 0.63 0.62 0.48
Aggressive 1. 1. 1. 1. 1.

In the case of a safe user specification, adding a symbol of any
type decreases the probability of choosing a valid trajectory. This
indicates that the model reacts under the internalized specifica-
tion to reject previously valid trajectories that interact with the
intervened object.

For the normal user type, significant changes are observed only
when we introduce a glass within the scene. This means it doesn’t
alter its behavior with respect to any of the other symbols.

In the last case, the aggressive user type doesn’t reject any of the
randomly proposed trajectories and that behavior doesn’t change
with the intervention. It suggests the specification model, in that
case, is not reacting to the scene distribution.

Based on these observations, we can postulate that the specifica-
tion model has internalized rules such as “If I want to be careful,
I need to steer away from any objects on the table” or “To find a
normal solution, look out for glass-like objects.”.

This type of causal analysis allows us to introspect in the model
preference and gives us an understanding of the decision making
capabilities of the model.

8 CONCLUSION
In this work, we have demonstrated how we can use a generative
model to differentiate between behavioral types by using expert
demonstrations. We have shown how the performance changes
with the number of trajectories illustrated in a scene. Additionally,
by using the same learned model, we can change any solution to
satisfy the preference of a particular user type, by taking gradient
steps obtained from the model.

We have shown that using causal analysis we can extract the
causal link between the occurrence of specific symbols within the

scene and the expected validity of a trajectory. The models exhibit
different behaviors with regards to the different symbols within the
scene leading us to correctly assume the underlying specifications
that the humans were using during the demonstrations.
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