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ABSTRACT
Analytic methods can be difficult to build and costly to train for

mobility data. We show that information about the topology of

the space and how mobile objects navigate the obstacles can be

used to extract insights about mobility at larger distance scales. The

main contribution of this paper is a topological signature that maps

each trajectory to a relatively low dimensional Euclidean space,

so that now they are amenable to standard analytic techniques.

Data mining tasks: nearest neighbor search with locality sensitive

hashing, clustering, regression, etc., work more efficiently in this

signature space. We define the problem of mobility prediction at

different distance scales, and show that with the signatures simple

k nearest neighbor based regression perform accurate prediction.

Experiments on multiple real datasets show that the framework us-

ing topological signatures is accurate on all tasks, and substantially

more efficient than machine learning applied to raw data. Theoret-

ical results show that the signatures contain enough topological

information to reconstruct non-self-intersecting trajectories upto

homotopy type. The construction of signatures is based on a differ-

ential form that can be generated in a distributed setting using local

communication, and a signature can be locally and inexpensively

updated and communicated by a mobile agent.

CCS CONCEPTS
• Mathematics of computing → Algebraic topology; • Infor-
mation systems → Location based services; Geographic in-
formation systems; Sensor networks; • Theory of computa-
tion → Nearest neighbor algorithms; • Computing method-
ologies →Machine learning approaches;
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1 INTRODUCTION
Location traces are computationally challenging to process. Dis-

tances between trajectories like Fréchet and Hausdorff distances [3]
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do not form a normed space, Dynamic time warping distance [28]

does not even form a metric [14]. As a result, typical computational

methods are difficult to apply. Specialized techniques have been de-

veloped for location traces. Theoretical approaches such as locality

sensitive hashing have to be tailored to trajectories for faster near

neighbor search [4, 14, 20]; computation of medians [7], popular

paths [21] etc have also been considered.

Analysis and prediction of motion have been developed with

Markov models [24, 34, 37] that assume motion to depend only on

the current “state” of an agent and not on longer history. However,

recent experimental results show that the memoryless assumption

of Markov models does not hold in real location data, since agents

do not execute a random walk, but move with the purpose to reach

a destination [31]. Specialized neural network based models [25, 33]

with the power to encode longer history are shown in practice to

be effective for next road segment prediction, although they do

not provide rigorous models for other general tasks, e.g., search

and comparison of trajectories. We instead seek a framework for

interpretable encoding of large scale properties of trajectories, that

is compatible with a range of analytic methods.

The motion of objects is determined by the major obstacles in

the plane, which defines the geometry and topology of the space.

However, considerations of topology raise complex issues, and tradi-

tional quantities like Fréchet distance are prohibitively expensive to

compute in domains with obstacles [9]. Geometric algorithms thus

usually assume motion in a simple plane, or of same topological

type.

In past work, Hodge theory and relative homology from algebraic

topology have been used for the purpose of topological classifica-

tion [27, 35]. However, these approaches are only applicable to

specific start and end points of trajectories, and yield only discrete

classifications by homotopy type, which is not general enough for

use in further analysis. They are also expensive to compute. We in-

tend to overcome these obstacles by using more flexible topological

constructs.

Our contributions. This paper shows that topological information

can enhance mobility analysis by meaningfully encoding large

scale patterns of movement, and demonstrates how the relevant

information can be represented compactly.

The geometry and topology of the space of mobility itself can

be discretized as a graph, where regions of zero or little activity are

treated as obstacles or holes, and the remaining space is triangulated

based on a suitable set of vertices.

Let us define a discrete differential form ξ : E → R as a function

that assigns values to directed edges. For any directed edge ab,
the function ξ satisfies ξ (ab) = −ξ (ba), that is, the values on an

edge and its reverse are negations of each other (See Section 2).

https://doi.org/10.1145/3274895.3274952
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Further, the values on the edges sum to zero around any face of the

graph, except possibly the obstacles. For each obstacle i , we define
a differential form ξi such that around obstacle i , ξi on the edges

sum to 1, and thus preserves topological information with respect

to this obstacle.

For any mobility trace A, the differential form values along its

directed edges are added to obtain ξi (A). For a trajectory that goes

around an obstacle i , ξi (A) = 1. In a space with k obstacles, the

general differential form ξ = {ξ1, ξ2, . . . ξk } is a vector of length k .
The significant property here is that a signature element ξi (A)

can have a real numbered value when A is not a perfect loop. The

signature ξ (A) ∈ Rk is a point ink dimensional space. Thus, beyond

simple topological equality, the signatures can represent topolog-

ical similarity. The mapping to a normed space enables standard

analytic techniques like clustering, regression, density estimation,

etc. We discuss the basic construction in Section 3 and the detailed

technique in Section 4.

Summations over differential forms preserve only large scale

properties, and are insensitive to noise that does not change topo-

logical type of a trajectory. As a result, the signatures are invariant

to localization errors and GPS noise. They are compact compared

to real trajectory data, and can be easily exchanged between mobile

nodes to perform mobility comparison among nearby nodes. It is

efficient to compute and to update incrementally as an object moves

in the plane. Comparison between trajectories is now reduced to

comparison of points in a low dimensional space. The signature

of a simple trajectory contains sufficient information to provably

reconstruct it upto homotopy equivalence.

The knowledge of global topological behaviors of trajectories

can be used to make predictions at larger scale beyond the next

road segment. For this purpose, we define a notion of prediction

at an arbitrary scale r . Simple k nearest neighbor regression on

the signatures performs comparably to expensive and opaque neu-

ral network based methods, which suggests that the topological

features are essential to understanding and prediction of motion.

Data mining techniques of locality sensitive hashing, dimension

reduction, etc run efficiently and accurately on the signatures (Sec-

tion 5). Experiments (Section 6) show that the dimensionality of the

signatures can be reduced by selecting only a few obstacles from

the domain, and this further increases the efficiency of the system.

Based on how the trajectories traverse the domains, the obstacles

themselves can be characterized by how they influence mobility.

Section 7 discusses some related works and how the new ap-

proach compares with them.

Before we move on with technical details, let us summarize

our approach into the following steps: 1. Find obstacle as sparse

regions of the plane 2. construct a differential 1-form for each

obstacle. 3. As a mobile agent moves, use these forms to track how

it circumnavigates each obstacle and get a point in Euclidean space,

where each dimension represents behavior with respect to one

obstacle. 4. Apply efficient analytic techniques treating trajectories

as points in Euclidean space.

2 THEORETICAL BACKGROUND
Discrete differential forms and exterior calculus are a varied topic of

study across many disciplines. This section presents a brief descrip-

tion of the main ideas relevant. A more formal treatment can be

found in [19]. Readers familiar with the topic can consider skipping

ahead to the next section.

Let us represent the space of motion using a simplicial complex

or a cell complex. A two dimensional simplicial complex is a planar

graph G with 0, 1, and 2 dimensional simplices as vertices, edges,

and triangles as shown in Figure 1(a). A simplicial complex is built

by attaching simplices together along subsimplices.

Orientation of a simplex is defined using ordering of constituent

lower dimension simplices. E.g. ordering of two 0−simplices [v0,v1]
produces an oriented 1−simplex or a directed edge, e , while its

opposite orientation is −[v0,v1] or −e .

A linear combination of d dimensional simplices:

∑k
i=0 λiσi ,

where each λi is an integer, is called a d-chain. A trajectory or

mobility trace can be seen as 1-chain.

The boundary (∂σ ) of an oriented p−chain σ is a (p − 1)−chain
that separates σ from rest of the complex and the orientation of

the boundary is inherited from σ . Planar graphs are orientable,

meaning that all its simplices can be oriented consistently [23].

Here, all 2−simplices or faces are assumed to be oriented counter

clockwise. Consequently, the boundary of a summation of faces

(2-chains) is the sum of their boundaries (1-chains); formally: ∂( f1+
f2 + f3 + . . . ) = ∂ f1 + ∂ f2 + ∂ f3 + . . . (Figure 1(b)).

(a) (b)

Figure 1: (a) 0, 1, and 2−simplices (b) Boundary operation on
a chain of 2-simplices

Cell complexes are a natural extension of simplicial complexes.

The only difference meaningful to this context is that a two dimen-

sional cell, or face, can be a simple polygon instead of a triangle,

otherwise a cell complex retains all relevant properties of a sim-

plicial complex. The area external to the planar graph is called the

exterior face, or the face at infinity. The edges at the boundary of

this face constitute the exterior boundary.

Dual complex. The dual of a simplicial complexG is a planar graph

⋆G where a face σ in G corresponds to a node ⋆σ in ⋆G and an

edge ⋆e in ⋆G exists between two nodes if the corresponding two

faces inG are adjacent with shared edge e . An example is shown

in Figure 2(a).

2.1 Discrete differential 1-forms and co-chains
Differential forms are defined as functions over the directed cells

of the cell complex. Specifically, 1-forms are values for the edge set
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E of a graph as ω : E → R. The values are associated with directed

edges, so that ω (ab) = −ω (ba). Given a discrete trace written as

e1 + e2 + e3 . . . , the integral of the form over it is now computed as

sum of ω over the directed edges: ω (e1) + ω (e2) + ω (e3) . . . .
The function ω thus defines a co-chain in C1 (G;R) that maps

1-chains to real values. The entire construct translates to a dual

with a dual function⋆ω defined simply as⋆ω (⋆e ) = ω (e ). Thus⋆ω,
yields a differential form ω, which will be useful in the following

section.

Sources and sinks. Suppose X (v ) is the set of edges of the type
(v, ◦) – that is, all edges incident on v , with orientation selected

as pointing outward from v . Then we can compute the net outflow
from v as h(v ) =

∑
e ∈X (v )

ω (e ). Depending on this value, v can be a:

• Source: net outflow h(v ) > 0.

• Internal or regular node: net outflow h(v ) = 0.

• Sink: net outflow h(v ) < 0.

Observe the effect on the dual system. For a primal face f with

dual vertex ⋆f , we have :
∑

⋆e ∈X (⋆f )

⋆ω (⋆e ) = ω (∂ f ).

3 TOPOLOGICAL SIGNATURES
The goal is to utilize differential forms to characterize the behavior

of the traces with respect to obstacles in the domain. We assume

that the obstacles such as buildings and lakes reside in the larger

faces of the graph and the mobile objects move along the nodes

and edges of the graph. The question of what constitutes important

obstacles in a domain will be taken up later, for now assume that

some faces are given to us to be treated as obstacles.

Dual sources. Each obstacle is a source of a dual vector field ⋆ξ .
More specifically, given a face f with an obstacle, the corresponding
dual node ⋆f is the only source for ⋆ξ in the dual graph. The

external face, dual node ⋆f0 is the only sink. A specific weight

h(⋆f ), usually set to 1, is associated with each source ⋆f .
The dual form with a value for each directed dual edge defines

a differential form for the primal graph using ξ (e ) = ⋆ξ (⋆e ). For
each face fi that is an obstacle, we create one such differential form

ξi , which equivalently sums to h(⋆fi ) around the boundary ∂ f –

representing a cyclic vector field along ∂ f . We refer to these as the

signature forms for the obstacles. The idea is shown in Figure 2.

The important property of this structure is that over any cycle γ
surrounding f , the form sums to ξ (γ ) = ξ (∂ f ) = h(⋆f ).

Theorem 3.1. For a 2−chainU with coefficients in 0, 1 in G (ex-
cluding f0) with a single source face fi , the differential form ξ (∂U ) =
h(⋆fi ) if fi ∈ U , otherwise ξ (∂U ) = 0.

The proof follows simply from the fact that for any face f ,
ξ (∂ f ) = h(⋆f ), and that ∂( f1+ f2+ f3+ . . . ) = ∂ f1+∂ f2+∂ f3+ . . . .

Topological signatures of trajectories. Using these differential
forms, we can now define the topological signature of a trace. If

there are k obstacles and corresponding signature forms, then for

a trace T , we get a k dimensional vector θ (T ). The component

θi (T ) represents to what extentT goes around obstacle i . If it forms

exactly one complete cycle, then θi (T ) = h( fi ).

(a) (b)

Figure 2: (a) An example primal graph with a source face f .
Dual path⋆ρ flows from⋆f to external node⋆f0.(b)Multiple
dual paths from the source ⋆f construct a differential form
of non-zero integral around ⋆f .

The useful feature here is that even if T does not quite form a

cycle, θi (T ) still reveals valuable information. If the value of θi (T )
is higher, it implies that t goes farther around the obstacle. This

construction is more general than simple winding numbers, since

the differential forms construction can assign arbitrary weights

to individual edges, and can be made sensitive to specific mobile

agents. From a computational point of view, it works directly on

a discrete structure, with or without knowledge of locations. The

symmetric nature of directed edges nullifies the effect of noisy GPS

localization.

The signature θ : T → Rk maps trajectories in set T to a k
dimensional space.

4 ALGORITHMS
This section describes how the mathematical construct of discrete

topological signatures can be realized, including in a distributed

environment.

4.1 Construction of planar graphs
The algorithms work on any planar graph on the mobility domain.

Following are a few possible strategies varied by availability of

mobility data and infrastructure.

Graphs from data. In many scenarios, road map data is available

and directly yields a graph, where road intersections are vertices

and road segments are edges. Alternatively, a simple model – a grid

or a triangulation of randomly deployed point sets (vertices) may

serve as the planar graph. In [27] a triangulation of the locations

from the dataset itself is used as the discrete domain. A mobile

trace is then converted to a sequence of edges in this graph. This

can be done by simply mapping locations to nearby vertices. With

sufficient data, it is also possible to construct a roadmap itself as is

done in openstreetmap and other projects [8].

Discrete sensor domains. In sensor networks and robotics, trajec-
tories may be recorded by sensors. Such a trajectory may not have

any localization at all, and is represented simply as a sequence of

sensors that have detected the mobile object. For localized and unlo-

calized wireless sensor networks, there is a large body of research in

topology control, localization and planar graph extraction, relying



SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA Ghosh, Rozemberczki, Ramamoorthy, Sarkar

on the locality of wireless transmission. Depending on the network,

such a technique can compute planar graph of the nodes [16, 30].

Our differential forms setup, as described in the previous sec-

tion, works on the planar graph, without the need for an explicit

embedding.

4.1.1 Obstacles and dual sources. Having constructed the planar
graph and map of trajectories to sequence of edges, we are left with

the question of what are the ‘obstacles’ in the domain. In principle,

every face can be an obstacle, but this is neither intuitive, nor

informative to any algorithm operating on the data.

Instead, a face can be an obstacle if it is larger than a certain size,

measured as area, diameter, or some other measure. The strength

h(⋆f ) of the source ⋆f , which is normally set to 1, can also be

set to be proportional to the measure to reflect the weight of an

obstacle. In unlocalized scenarios, there are techniques for detecting

boundaries of large enough sizes [32], while a measure such as the

number of edges on the face can be used to determine its weight.

Subsection 5.3 discusses more involved questions of determining

the importance of an obstacle and dimension reduction techniques

to merge nearby obstacles to simplify data.

4.2 Constructing signature forms

For each obstacle face f , our basic strategy is to take its dual face
⋆f , and start multiple walks in the dual graph. The walks spread in

all directions, and end in the exterior face at infinity ⋆f0. The total
weight of the walks is h(⋆fi ). Having constructed walks of total

weight of h(⋆fi ), the weight of each dual edge can be transferred

to the corresponding primal edge as ξi (ab) := ⋆ξi (⋆ab).
In a distributed sensor network scenario, the operations of a

dual node ⋆f , which is a face f in the primal, can be handled by

an elected sensor node on its boundary. There are different ways

to structure these walks and the corresponding differential form.

Unless mentioned otherwise, the following mechanisms work in

localized as well as unlocalized graphs.

Randomwalk in the dual. Starting from the dual node⋆fi , create
several random walks that stop only when they reach ⋆f0. Each
walk has a weightw , and to each directed dual edge⋆ab it traverses,

the weight is added as ⋆ξi (⋆ab) := ⋆ξi (⋆ab) + w . Note that this

process preserves the strictly one source (⋆fi ) and one sink (⋆f0)
since at every other vertex it exits every time it enters. The walk is

also allowed to pass through ⋆fi as well as any other dual vertex.

Shortest paths in the dual. Another possible way of constructing
the signature forms is using shortest paths to the boundary faces,

which are adjacent to the external face f0.
From these boundary faces, select a subset either randomly or at

some uniform separation. From the dual source node⋆fi , a shortest
path in the dual is computed to each such boundary face ⋆fj and
appended a final edge (⋆fj ,⋆f0) to complete the walk.

Following a straight line to the boundary. In scenarios with

available locations, instead of selecting faces at the boundary, it is

possible to select specific locations at the boundary and follow a

straight line to them. By picking a location to place the dual nodes

inside faces, e.g., at centroids, a line starts from a source location⋆fi .
’Following’ a straight line in the dual graph is essentially choosing

the next node in the path that minimizes the distance to the line

segment [26].

4.3 Computing topological signatures
A trace consists of a sequence of edges, and for each edge e , the
value ξi (e ) is computed corresponding to each obstacle i . Thus, for
each e traversed by the trajectory T results in updates of the form

θi (T ) = θi (T ) + ξi (e ).
In a distributed scenario, this works naturally, where for any

edge ab, the ξ values for this edge are held by sensors a and b, and
when a mobile object traverses this edge, it can obtain the values

locally and maintain its own θ (T ) vector. Or in a tracking scenario,

the sensors as they track the object’s motion can maintain and

handoff this value.

While in principle θi (T ) can take up any real value, the larger

values of θ imply an agent circumscribing an obstacle many times.

This is unlikely in many realistic scenarios such as trips in a city. In

such cases, it is natural to assume that on a single trip an agent does

not take sub-optimal self-intersecting paths that that go all the way

around the obstacle. Thus, for such trajectories, for any obstacle

i , |θi (T ) | < 1, and let us refer them as simple trajectories. Theo-

rem 4.1 shows that for simple trajectories, the signature uniquely

determines their homotopy type.

(a) (b)

Figure 3: (a)Two simple trajectories α , β goes from s tod have
same homotopy typew.r.t. source fj , but different homotopy
type w.r.t. fi . (b) Two self-intersecting paths between same
source and destination may have same signature value but
different homotopy type.

Theorem 4.1. For two simple trajectories α and β between same
source s and destination d :

θi (α ) =



θi (β ) If α , β have same homotopy w.r.t. source fi .
θi (β ) ± 1, otherwise [assuming h(⋆f ) = 1]

Proof. An example setup is shown in Figure 3(a). Where paths α
and β have the same homotopy type with respect to fj and different
types with respect to fi . The concatenation of α with −β gives loop

γ = α − β .
The first claim simply says θ j (α ) = θ j (β ), since otherwise θ j (α −

β ) , 0, contradicts Theorem 3.1.

For the second claim, any closed oriented one dimensional loop

object γ̂ in the two dimensional cell complex is the boundary ∂U of

a chainU with coefficients in [0, 1]. Thus fi ∈ U implies ξ (γ̂ ) = 1.
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(a) (b)

Figure 4: (a) Construction of homotopy equivalent path for
desired signature value. (b) Realization of the idea by taking
a path from the current path to the boundary of the obstacle.

Depending on the orientation of γ = α − β ,θ (α − β ) = ±θ (γ̂ ) = ±1,
implying the second claim. □

Figure 3(b) shows an example where the above condition is

violated, and trajectories of the same signature have different ho-

motopy types.

4.4 Reconstructing traces from signatures
The following lemmas say that given a signature it is possible to

check in polynomial time if such a trajectory exists, and if so it can

be reconstructed up to homotopy equivalence in linear time.

Lemma 4.2. Given a signature vector X , source s , and destination
d ; it is possible to find in linear time if there exists a homotopy class
of simple paths going from s to d with the signature X .

Proof. Consider the shortest path P from s to d as shown in

Figure 4(a) and its signature θ (P ). Using the result fromTheorem 4.1,

the only thing to test is if (θi (P ) −Xi ) ∈ {0, 1,−1} for all i . This can
be done in linear time in the number of holes in the domain. □

Lemma 4.3. Given signature vector X , source s , and destination
d , there exists an algorithm to find a unique simple trajectory up to
homotopy equivalence with signature X . The algorithm runs in linear
time in the number of holes in the domain.

Proof. A natural extension of Lemma 4.2 uniquely identifies

the source faces fi where we need to change the side by which P
passes fi – precisely where (θi (P ) − Xi ) , 0. Next, these sources

are fixed iteratively.

Initialize this process by setting the path P as the shortest path

from s to d . Suppose at iteration l , the path is P l and the next

obstacle to fix is fi . Consider an arbitrary node b ∈ P l , and another

arbitrary node a ∈ ∂ fi as shown in Figure 4(b). Now P l+1 is the
concatenation of the following path segments: s to b, b to a, a to

a (along ∂ fi ), a to b, and finally b to d . So, the path P l+1 has now
right homotopy type w.r.t. fi . □

This construction essentially determines the homotopy type

from the signature. Given that, we can now compute a short path

in that class using well known algorithms in computational geome-

try [18].

5 APPLICATIONS AND OPTIMIZATIONS
Here we discuss how they can be designed and implemented for

better applied analytics.

5.1 Nearest neighbor search and Locality
Sensitive Hashing

A fundamental question in data analysis is the search for nearest

neighbor, or k nearest neighbors, which forms the basis of several

classification and clustering techniques and queries on noisy data.

In case of trajectories, searching for nearest neighbors is expensive

due to the fundamental cost of comparing two long trajectories [3].

Locality sensitive hashing (LSH) is used in data mining to ac-

celerate the search for nearest neighbors. However, defining LSH

for trajectories is a non trivial problem, as is constructing com-

putationally efficient hash functions [14]. We want to instead use

representations of trajectories as points in the Euclidean space,

where good LSH techniques are known.

A standard LSH scheme [11] uses a hash function h constructed

as follows. Select a random straight line in Rk . Then project each

data point linearly onto the line. Partition the line into segments of

lengthw for some givenw , and treat each segment as a “bucket”.

Nearby data points are likely to hash into the same bucket, while

far apart points are likely to hash to different ones. Given a query

point q, we can perform the same projection and hashing, and

then search for its nearest neighbor in the bucket containing q.
Expensive methods [3] can be used for this search since the pruned

candidate set is smaller. Repeating the process with multiple hash

functions increases the probability to find the true nearest neighbor

of q. Note that Euclidean hash is substantially more efficient than

direct locality sensitive hashing of trajectories described in [14, 20].

5.2 Predicting motion at large scales
Let us definemotion prediction at scale r , where r is a given distance
– e.g. 500 meters. We wish to ask where will a mobile object be,

when it is at a distance r from its current location. Formally suppose

o is the current location, Cr is the circle of radius r centered at o.
Based on our mobility data, we can predict p onCr as a point where
the object’s trajectory will exit (intersect) Cr .

To measure the error in prediction, suppose the object actually

exits the circle at point z. The prediction error is defined as the angle
ϕ = ∠poz. More accurately, it is min(��ϕ�� , ��2π − ϕ��). See Figure 5(d).
Since the scale itself is given, the essential task here is to predict the

right direction from o at scale r , which is represented as predicting

the angle.

The motion prediction itself can proceed according to any ma-

chine learning method. Experiments in 6 finds that standard pre-

diction techniques based on k-nearest neighbors, linear regression,
random forest, gradient boosting trees work well.

5.3 Dimension reduction, correlation and
domain analysis

Given that the trajectories are now points in k dimensional Eu-

clidean space given by θ (T ), standard analytic techniques can be

applied to better understand the trajectories, and to understand the
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Figure 5: (a) Trajectory set with 8 obstacles. (b) Correlation matrix with respect to signatures of the trajectories. Darker shades
imply higher correlation (c) PCA based importance ranking. (d) Given the history predict the next direction ϕ at current
location p.

the underlying domain from the perspective of the given trajecto-

ries. We can ask, which obstacles are important, or which obstacles

are similar with respect to actual mobility patterns?

Figure 5(a) shows a set of trajectories moving in the plane around

obstacles 1, 2, . . . , 8. Clearly, there is a natural grouping of obsta-

cles where obstacles 3 and 4 are similar in the sense that they act

practically as a single obstacle, since every trace passes either to

the right or left of both. The same holds for pairs (5, 6) and (7, 8).
Obstacles 1, 2 are also similar in the sense that most traces behave

similarly with respect to both, with only a few passing between

them.

These intuitive results can be obtained from standard analytic

and visualization methods. Figure 5(b) shows the correlation matrix

of θ , where darker shades indicate higher correlation. The correla-
tion lets us have a more abstract view of the domain, where related

nearby holes can be viewed as one.

Techniques like Principal Component Analysis can be applied

to the Euclidean data to determine which dimensions record larger

variance – implying larger variability in how traces traverse the

obstacles. We apply this idea to get the intuitive result in Figure 5(c)

that obstacles 1 and 2 are clearly more significant than others as

they split a large body of motions.

Greedyfiltration of obstacles.Adifferent strategywhich is found

effective in experiments, is to greedily select obstacles (dual sources)

that maximize the accuracy for the task at hand.

For example, for nearest neighbor search, this accuracy can be de-

fined as the fraction of times that the true Fréchet nearest neighbor

is contained among the m nearest neighbors. The greedy strat-

egy will iteratively select the obstacle that maximizes the total

accuracy over all pairs, until it has selected some k obstacles. For

scenarios with large number of obstacle, similar strategies can be

implemented for distributed cluster computation [? ]. The benefit
of this heavy computation is that the signatures become more com-

pact and assuming the dataset is representative of typical motion,

future computations of signatures, nearest neighbors, predictions

etc will be more efficient.

5.4 Adaptive resolution signatures
It is natural to ask for representations that give greater weight

to recent information and less weight to history, for example, for
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Figure 6: (a) Trajectories flow left to right. (b) Distance of α ’s
signature from others shows that in near future the set γ is
more relevant than the set λ that have clearly diverged.

short term prediction. The signatures can be seamlessly adapted

to achieve this using weighted averaging. Where for each edge

traversed by the trajectory, we modify the update rule to be θi (T ) =
β .θi (T ) + (1 − β )ξi (e ) for a constant β : 0 < β < 1 that determines

the weight of history in the signature.

In the example in Figure 6(a) at point o, the adaptively weighted

signature finds the set γ to be currently more relevant to the query

α .

5.5 Composing signatures
The composability of differential forms means that a set of traces

can be represented in the signature space as a linear combination

of the constituent traces – such as the mean of all the signatures.

This simplifies center computation by creating an abstract ‘center’

that is not a trajectory itself, but can be used to compare other

trajectories to the given cluster or set.

5.6 Implementation in distributed and mobile
setups

Mobile computers are a natural platform for application of tra-

jectory signatures, with applications in social mobile networks,

autonomous driving, etc. For large computers in automobiles, the

differential forms can be pre-loaded into the memory, downloaded

incrementally as required. In sensor or other dense network sce-

narios, the mobile device can obtain local values of ξ from nearby
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sensors and devices. The signature is computed and stored incre-

mentally.

The knowledge of signatures allows mobile entities to exchange

data with other nearby ones and predict which ones are likely to

have similar behavior. This is useful, for example, in autonomous

vehicles and delay tolerant networks.

The above constructions of differential forms are all naturally

implementable in distributed scenarios like sensor networks. For

example, consider a Voronoi diagram of sensors where they can

detect the direction and identity of the objects crossing the edges of

the voronoi graph, as used in [29]. The sensors maintain the weights

on the edges giving the differential forms and as an object moves

between cells, its signature is handed off (similar to hand-off in

cellular network) to the successive sensor. An alternative approach

could be for the sensors to record and store the edge crossings of

mobile objects, and compute the signature on demand by summing

along the handoff path.

6 EXPERIMENTS
In this section, we show experimental evidences that the topologi-

cal signatures simplify the representation of trajectories and also

perform well in clustering, prediction, and other tasks. The main

observations are:

• Nearest neighbor of a query trajectory according to Fréchet

distance can be found efficiently using fast Locality Sensitive

Hashing and pruning on topological signatures.

• Motion prediction of trajectories is accurate and efficient. It

achieves similar accuracy as Long Short Term Memory neu-

ral networks (henceforth LSTM), but provides much faster

training and query time. Prediction results are verified using

two real mobility datasets.

• Greedy source selection reduces dimension to get compact

signatures, with minimal loss in quality of analytic results.

• Popular paths or paths with the most number of trajecto-

ries in a given region can be estimated by kernel density

estimation on signatures.

• Topological signature based method is robust to sparse, noisy

trajectories; it can predict future direction of mobile objects

accurately in trajectories with many missing data points.

6.1 Experimental setup

Dataset.Weuse two publicly available datasets: RomeTaxi dataset [6]

and Porto Dataset
1
. While the former has trajectories of 320 taxis

for a month in Rome, Italy; the latter has trip partitioned trajectories

of 442 taxis for one and half years in Porto, Portugal.

Constructing planar graph. The Delaunay triangulation [15] of

20000 random points in the plane make the planar graph G. Each
gps point of a trajectory is mapped to its nearest node in G and

connecting them by the shortest path in the graph produces its

representation in G.

Identifying obstacles. All faces inG where less than a predefined

threshold number of trajectories pass a boundary edge are consid-

ered as obstacles. E.g, the portion of Rome dataset in Figure 7(a) have

1
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i

67 such obstacles with threshold 2. In Porto dataset (Figure 10(a)),

we choose 30 largest regions of low trajectory density as obstacles.

Constructing differential forms. Dual paths along linear rays

with random slopes from each obstacle yields the differential forms

(Section 4.2). E.g, in both Figure 7(a) and Figure 10(a) 20 dual paths

each with weight 0.05 are constructed from each obstacle.

6.2 Nearest neighbor search
Fréchet nearest neighbor of a query trajectory is approximated

by the pruning based on LSH with trajectory signatures using

independently chosen 3 sets of 5 linear projection hash functions.

This experiment uses each trajectory in Figure 7(a) as a query

trajectory in turn.

Figure 7(b) confirms that with high probability, Fréchet nearest

neighbor is included in the approximate k nearest neighbors found

by LSH. Larger bucket size naturally yields better accuracy and

offers standard accuracy and efficiency trade-off of LSH.

In efficiency, even including preprocessing time to construct

planar graph (15.9 sec), differential forms (20.5 sec), and computing

signatures (varies with dataset size), this method greatly outper-

forms basic Fréchet based method of computing distance to all

trajectories (Figure 7(c)). The Euclidean distance measure is faster

than Fréchet and LSH based pruning makes a query even faster.

Fréchet distance is computed using [1]. The experiments are run

on a typical desktop machine with 8 GB primary memory and Intel

i5 processor.

6.3 Clustering and estimating density
The signatures are useful to cluster trajectories. Figure 8 shows a

small example with 66 trajectories. The varied types of trajectories

are well separated even if they have large portion of overlapping

pattern.

High density regions in the signature space correspond to popu-

lar topological types of trajectories. The popular bidirectional traffic

flow in Figure 9(a) is neatly identifiable in the estimated density

using Gaussian Kernel in Figure 9(b). Clustering can also be applied

to anonymize personal data [36].

6.4 Motion prediction
Figure 7(a) and Figure 10(a) show the datasets from Rome and Porto

respectively used in prediction experiments. With randomly chosen

90% trajectories as training, we predict direction ϕ for different

scales r on each test trajectory where current location o is randomly

chosen from middle 1/3rd of its length. The prediction error is

measured as described in Section 5.2.

Using topological signatures, next direction is predicted as the

mean direction ϕ of k nearest training trajectories that pass within

20meters ofo. The nearest neighbors are computed usingkd-tree on
the space of signatures with the training trajectory segments ending

near o. In both Porto and Rome dataset, our method attains high

accuracy evenwith small number of nearest neighbors (Figure 10(b))

and large prediction radius (Figure 11).

As a benchmark we use neural networks with LSTM as regres-

sors [17] to predict ϕ, given equi-spaced 20 locations on the tra-

jectory between o and start of the trajectory. Each model has two
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Figure 7: (a) A region (latitude−[41.8708◦N , 41.8826◦N ] and longitude−[12.4919◦E, 12.5089◦E]) of size roughly 1km × 1km from
Rome taxi dataset with 1189 sub-trajectories. We detect 67 internal holes (shaded) using trajectory density threshold as 2.(b)
CDF of percentage of times the nearest neighbor is included in the approximate k nearest neighbors (x-axis) found using
Locality Sensitive Hashing based on topological signatures. With suitable segment length, Locality Sensitive Hashing can
reliably approximate k nearest neighbors to find Fréchet based nearest neighbor. (c) Time to run naive Fréchet increases super
linearlywhen increasing the size of the dataset whereas topological signaturemethod consumes very little time in comparison.
(d) k nearest neighbor query accuracy with 5 obstacles selected using different source selection strategies.

Figure 8: Clustering 66 trajectories from Rome taxi dataset
using DBSCAN clustering algorithmwith neighborhood dis-
tance parameter set as 0.25 and minimum samples to form a
cluster is set as 2. To construct the triangulation, 20000 ran-
dom points are used, Sources are placed based on the trajec-
tory density threshold as 2.
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Figure 9: Detecting popular topological types using kernel
density estimate of the trajectory signatures. (a) Portion of
trajectories from [6] with 1809 trajectories (area 1km × 1km).
The busiest road in this map is easily visible. Two signature
sources are manually placed in the map. (b) Two hotspots in
the kernel density estimate denotes the two way traffic on
the busy road.

layers of 20 LSTM cells followed by a fully connected layer with

100 rectified linear units. With a squared error loss function we

train these models with a variant of stochastic gradient descent

for 50 epochs using a batch size of 32 with the standard optimizer

settings [13]. Figure 12(a) shows that simple k-NN on topological

signatures achieve similar accuracy as LSTM, implying that the

topological signatures in fact encode the critical intrinsic features

that determine motion.

Figure 13 shows that topological signature based prediction

is more efficient than LSTM in terms of both preprocessing and

query time. Before answering queries, whereas our method requires

to setup planar graph, identify obstacles, and create differential

forms; LSTM requires data preprocessing and training. Although

our method needs to find k nearest neighbors at query time, it offers

faster query than LSTM. We use TensorFlow for implementing the

LSTM [2]. All experiments are run on a typical desktop machine

with 8 GB primary memory and Intel i5 processor.
Popular regression techniques, Random Forest, Gradient Boost-

ing Trees, and Linear Regression also predict ϕ well given the

current location o and topological signature of trajectory segments

ending at o. High prediction accuracy of these methods in Fig-

ure 12(b) suggests that using topological signatures, the plethora of

knowledge about these well studied methods can now be leveraged

for trajectories and mobility analysis.

6.5 Signature source selection
In domains with large number of obstacles, the signatures will

have correspondingly large size, losing the benefits of compact

representation. We found that in practice, differential forms with

respect to a small number of sources suffice to accurately capture

the motion.

Figure 7(d) compares different signature source selection strate-

gies in Rome dataset from Figure 7(a); different strategies can select

small number of signature sources to attain high nearest neighbor

query accuracy. Specifically, this experiment compares the follow-

ing strategies: i ) all faces in G with low trajectory density (holes)

are signature sources, ii ) k largest holes, iii ) greedy selection as

described in Section 5, and iv ) randomly choose k sources from all
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Figure 10: (a) A region latitude–[41.1468◦N , 41.1699◦N ] and
longitude–[8.62931◦W , 8.60411◦W ] of size 2.5Km×2.1Km from
Porto dataset with 3952 trajectories. Among 101 regions with
low trajectory density (threshold 2), we consider largest 30 to
be obstacles. (b) In Porto dataset, topological signature based
method accurately predicts next direction even with small
number of nearest neighbors. Here, r = 100 meters.
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Figure 11: Topological signature based method can accu-
rately predict next direction even for large r in (a) Porto
dataset and in (b) Rome dataset. Here, k = 4 neighbors.
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Figure 12: (a) Topological signature based method attains
similar accuracy as LSTM. (b) Popular regression methods
using topological signatures achieve similar high accuracy.

faces in G. This result demonstrates that trajectories in a complex

domain can be represented by simple low dimensional topological

signatures.

6.6 Robustness to sparsity
Mobility traces differ in sparsity of constituent entities due to varied

location sampling frequency. In this experiment, the dense GPS

traces are made sparse by randomly retaining location points at

fixed rates. The Figure 14 shows that our method can accurately

predict motion in trajectories with missing locations.
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Figure 13: (a) Preprocessing and (b) query time. Both in-
crease slowly for topological signature based method com-
pared to LSTM, with dataset size.
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Figure 14: Predicting locationswith sparse trajectories: Each
location point is retained with certain probability in each
trajectory. Our method achieves high prediction accuracy
even with sparse trajectory.

7 RELATEDWORK
Hodge decomposition of a randomly generated vector field has been

used in [35] to classify paths into homotopy types. This approach

relies on a numerical process, and only applies to trajectories with

same start and end points. This problem is avoided to an extent

in [27], which uses relative homology, and marks certain regions of

the space where start and end points lie, but other trajectories do

not pass. Thus these approaches do not apply to general trajectory

datasets of the type we have considered here. Both these methods

are also computationally expensive.

In other works, topological characterization has been used to

measure distances between curves [10] but restricted to curves

with same start and end points, since homotopy cannot be defined

between open curves. A seminal work [5] Baryshnikov and Ghrist

used integrals of Euler characteristics to compute number of mobile

targets. Topological persistence can be used to simplify trajecto-

ries [22]. Discrete exterior calculus has been a subject of study in

graphics, modeling and discrete geometry and developed in several

different flavors [12, 19]. In sensor network, it has been used for

performing range queries of mobile objects [29].

Mobility modeling using (hidden) Markov models have been

developed in [24, 34, 37] and other works, usually with the objective

to predict the agent’s next road segment. As mentioned earlier,

the Markov assumption can be shown to be unrepresentative of

typical trajectory datasets [31]. In line with recent developments

in machine learning, Neural networks have been designed for the

prediction task. Recurrent Neural Networks using Long Short Term

Memory are considered useful in sequential data, and has been used
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in [33]; we used a similar approach in our experiments, modified

suitably for geometric trajectories in the datasets.

In contrast to these methods, our approach is computationally

much more efficient in preprocessing, training as well as prediction

query. It can be applied to road networks and geometric data alike.

Unlike Markov and neural models that simply provide a prediction

mechanism, the topological signatures reveal similarity between

trajectories and reveal insights about how they traverse the domain.

As a result, they can form the basis of search, clustering, prediction

and other analytic tasks.

8 CONCLUSION
We presented a topological framework to represent a trajectory as

a point in a Euclidean space, enabling natural applications of well

established machine learning and mining techniques. The topologi-

cal construct preserves relevant qualitative features in trajectories

while ignoring the extraneous details and noise. The framework

can be set up using fast distributed algorithms and used in an on-

line manner by mobile entities. The framework is quite general and

flexible, and it allows application specific choice of obstacles and do-

mains. Dynamic obstacles, temporal characteristics of trajectories

are interesting future directions to consider.
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