
Predicting Future Agent Motions for Dynamic Environments

Fabio Previtali
Sapienza University of Rome

Alejandro Bordallo
University of Edinburgh

Luca Iocchi
Sapienza University of Rome

Subramanian Ramamoorthy
University of Edinburgh

Abstract— Understanding activities of people in a monitored
environment is a topic of active research, motivated by ap-
plications requiring context-awareness. Inferring future agent
motion is useful not only for improving tracking accuracy, but
also for planning in an interactive motion task. Despite rapid
advances in the area of activity forecasting, many state-of-the-art
methods are still cumbersome for use in realistic robots. This
is due to the requirement of having good semantic scene and
map labelling, as well as assumptions made regarding possible
goals and types of motion. Many emerging applications require
robots with modest sensory and computational ability to robustly
perform such activity forecasting in high density and dynamic
environments. We address this by combining a novel multi-camera
tracking method, efficient multi-resolution representations of state
and a standard Inverse Reinforcement Learning (IRL) technique,
to demonstrate performance that is better than the state-of-the-art
in the literature. In this framework, the IRL method uses agent
trajectories from a distributed tracker and estimates a reward
function within a Markov Decision Process (MDP) model. This
reward function can then be used to estimate the agent’s motion
in future novel task instances. We present empirical experiments
using data gathered in our own lab and external corpora (VIRAT),
based on which we find that our algorithm is not only efficiently
implementable on a resource constrained platform but is also
competitive in terms of accuracy with state-of-the-art alternatives
(e.g., up to 20% better than the results reported in [1]).

I. INTRODUCTION

Tracking multiple agents in a dense environment, be it

humans or robots, is a challenging problem. A multitude of

solutions exist for dealing with its different facets, such as

overcoming occlusion or motion prediction. Inferring future

motion of agents is useful not only for improving tracking

accuracy, but also for planning in interactive tasks. Inferring

future actions of an agent is known as activity forecasting.

Over the past decade, many novel methods have been de-

veloped for activity forecasting. These methods include those

based on classifiers with structured outputs, which directly

discriminate at the level of trajectories albeit with richer

representations of the same. Another approach, called Inverse

Reinforcement Learning, posits that the motion may be well

described as being generated by optimisation within an MDP

model, so that learning the motion is the same as inferring

the implicit reward function being optimised. In order to

keep these algorithms efficient, one often makes assumptions,

such as that the scene and environment have been labelled

in a semantically meaningful way (thus reducing the sample

complexity) or that the space of possible motions is well

parametrised and understood.

In many realistic robotics domains, we must apply these

methods with a less clear understanding of potential goals

(perhaps because the environment is new to the robot, such

as in a rescue or rapidly changing construction environment),

Fig. 1. Activity forecasting using the proposed framework based on IRL.
Raw data are acquired from a set of Kinects and then processed by the
PTracking algorithm. The agent trajectories in output are subsequently used
by an IRL method to generate the agent’s set of possible future activities.

including in dynamic environments [2]. We address this

setting by combining a distributed multi-camera tracking

method and a multi-resolution representation of the envi-

ronment, with a standard IRL method. This paper uses a

relatively standard IRL method, allowing for the possibility

that more sophisticated alternatives could be employed in

future, within the overall proposed framework. Our focus is

on demonstrating that a complete pipeline including this IRL

method can be implemented in a resource constrained real-

time setting, to solve the challenging problem of predicting

agent’s future motion.

Contributions. We propose an integrated framework (Fig.

1) that brings together an IRL technique with distributed

tracking and multi-resolution state representation, such that it

(1) does not rely on semantic scene labelling before activity

forecasting, (2) incrementally updates the IRL model over

time as new data becomes available and (3) makes use of

non-uniform grids for state representation, making the entire

framework linearly scalable with respect to the size of the en-

vironment. We use PTracking, our distributed multi-camera

multiple object tracker, as the first component [3]–[5]. Local

and global agent position, as well as velocity estimates,

are updated via online tracking, providing trajectories that

are then used within an IRL algorithm. This algorithm is

fairly standard, and taken directly from the literature, in

this first instantiation of our framework. While this allows

us to implicitly consider sensor noise and false positives,

we do recognise that a more elaborate IRL method that

can target a Partially Observable Markov Decision Process

motion model - something that is still hard to do and certainly

not yet efficient for robot implementation - could be a useful

future step. The output of this process is a set of reward

functions - one for each goal (see Section IV-B) - per agent,

2016 15th IEEE International Conference on Machine Learning and Applications

978-1-5090-6167-9/16 $31.00 © 2016 IEEE

DOI 10.1109/ICMLA.2016.137

94

Fig. 2. The functional architecture of the PTracking approach. Each node performs a local and a global estimation of the observed situation. For the
global estimation, local information collected from other nodes (black arrows) are used.

describing its goal-oriented navigation policy across space.

These reward functions represent the agent’s set of possible

future activities, forecasted or chosen from a probability

distribution function via comparison with real-time observed

agent behaviour. Additionally, the proposed approach allows

us to perform anomaly detection by adopting a flexible notion

of trajectory distance, such as the Fréchet distance which

allows for graceful degradation even when dealing only with

small fragments of the overall motion.

We show that our method infers agent goals accurately in

a varied set of environments. We present a comparison of

our framework against state-of-the-art alternatives from the

literature. We use as baselines, a method of Ziebart et al. [1],

the Maximum Entropy Markov Model (MEMM) and a ran-

dom walk method. A quantitative evaluation using multiple

data sets shows how our approach performs competitively.

II. RELATED WORK

The problem of understanding activities of people in a

monitored environment is becoming increasingly well stud-

ied by researchers in multiple communities. The focus is of-

ten on two types of challenges - human activity classification
and activity recognition. Human activity classification is an

important yet difficult problem in computer vision [6], whose

aim is to determine what people are doing, given a set of

observations. It finds wide applicability in video surveillance

[7], human-computer interfaces [8], sport video analysis [9]

and content-based video retrieval [10].

Activity recognition, on the other hand, has as its goal the

estimation of a belief-state from observations over time. It

follows then that, activity recognition is a temporal classifi-

cation problem; an agent must generate a sequence of labels,

identifying the roles or behaviours of the other agents, given

a sequence of observations [11]. Typically methods address-

ing both activity classification [12] and activity recognition

[11] require a substantial amount of captured data during the

training phase to generate useful models, a requirement that

is not satisfied in many realistic applications. Additionally,

even when such data is available, such frameworks may not

be able to adapt the learnt model to changes in the monitored

environment or, as is needed in some cases, adapt to the

dynamics of the environment.
The focus of our work is on trajectory-based human activ-

ity analysis. As a proof-of-concept, we propose a Trajectory-
Based Inverse Reinforcement Learning method for estimating

future actions of people (or of robots, vehicles and other

agents) from noisy visual input. Similar work has been

carried out with success by Ziebart et al. [1], who report

on activity forecasting by combining an IRL algorithm with

a semantic representation of the scene. It is not clear how

that technique would deal with unstructured, and in particular

not previously labelled, environments.

III. TRACKING AND DATA ASSOCIATION

The problem of tracking multiple objects by using multiple

sensors can be formalised as follows. Let O = {o1, . . . , on}
be the set of all moving objects, each one having a different

identity, and S = {s1, . . . , sS} be the set of arbitrarily

fixed sensors, each one having limited knowledge about the

environment (i.e., each camera can monitor only part of the

scene). Moving objects are detected by a background sub-

traction algorithm and the number of objects n is unknown

and can change over time. The set of measurements about

the objects in the field-of-view of a camera s ∈ S at a

time t is denoted by zs,t = {z(1)s,t , . . . , z
(l)
s,t}, l ∈ Z, where

a measurement z
(i)
s,t represents the Cartesian position, width

and height of the moving object and it can be either a real

object present in the environment or a false positive. The set

of all the measurements gathered by all cameras at time t
is denoted by zS,t = {zs,t | s ∈ S}. The history in time of

all the measurements coming from all cameras is defined as

zS,1:t = {zS,j : 1 ≤ j ≤ t}. It is worth noticing that, we do

not assume the measurements generated by the cameras to

be synchronised.
The goal is to determine an estimation of the positions

xs,t = {x(1)
s,t , . . . , x

(v)
s,t }, v ∈ Z, for all the objects in the

scene at time t in a distributed fashion - i.e., exploiting all

the available sensors. In order to achieve this goal, a possible

solution is to use the Bayesian Recursive Estimation, defined

as follows:

95

p(xs,t|zS,1:t) = p(zS,t|xs,t)p(xs,t|zS,1:t−1)∫
p(zS,t|xs,t)p(xs,t|zS,1:t−1)dxs,t

(1)

p(xs,t|zS,1:t−1) =

∫
p(xs,t|xs,t−1)p(xs,t−1|zS,1:t−1)dxs,t−1 (2)

Eq. (1) and (2) represent a global recursive update that

can be computed if and only if complete knowledge about

the environment is available - i.e., p(zS,t |xs,t). Since this

is not the case, we approximate the above exact optimal

Bayesian computation by means of a Distributed Particle

Filter-based algorithm (Algorithm 1). In particular, we extend

to a multi-sensor scenario the PTracking method, which is

an open-source tracking algorithm based on a Distributed

Multi-Clustered Particle Filtering.
The estimation of the positions xs,t is given by the

vectors (Is,t,Λs,t,M s,t,Σs,t) containing information about

the identity (I), the weight (Λ), the mean (M) and the

standard deviation (Σ) of each object, represented as a

Gaussian Mixture Model (GMM). The size of the vectors

can vary during the execution of the tracking algorithm,

depending on the number of detected objects.
The estimation process is made of three main steps:

(1) the prediction step, which computes the evolution of

the estimations xs,t given the observations zs,t provided

by the sensors, (2) the clustering step, which groups the

estimations determining their GMMs parameters and (3) the

data association step, which assigns each observation to an

existing track by considering the history of all existing tracks.
Prediction. The particle filter uses an initial guessed

distribution, based on a transition state model. Then, using

the previous state xs,t−1, the transition model, given by the

measurements zs,t, is applied. From this guessed distribu-

tion, a set of samples is drawn and weighted exploiting the

current observation zs,t. Finally, the Sampling Importance
Resampling (SIR) principle is used to re-sample the particles,

which are then clustered to determine the parameters of the

final GMM model.
Clustering. A novel clustering algorithm, called KCluster-

ize, is used for the clustering phase. KClusterize is designed

for fulfilling the following requirements: (1) the number of

objects to detect is not known a priori, (2) low computational

load is needed for real-time applications and (3) each cluster

has to reflect a Gaussian distribution. First, the particles are

grouped into clusters. Then, a validation step is applied to

verify that each cluster actually represents a Gaussian distri-

bution. All the non-Gaussian clusters are split (if possible) in

Gaussian clusters. In order to check that a cluster represents

a Gaussian distribution, we first draw - for each cluster - a

Gaussian distribution centered on the cluster centroid with

σ = 1. Afterwards, we compare the set of points contained

into each cluster with the corresponding ones generated

from the cluster centroid by using the Euclidean distance.

It is important to note that, the final number of Gaussian

distribution components provided as output can be different

from the one found during the first step. Finally, the obtained

clusters form a GMM set (λs,t,μs,t,σs,t) representing the

estimations performed by the sensor s at time t.

Algorithm 1: PTracking

Input: perceptions zs,t, local track numbers is,t−1, global
track numbers Is,t−1

Data: set of local particles ξ̃s,t, set of global particles ξ̃S′,t,
local GMM set L, global GMM set G

Output: global estimations xs,t = (Is,t,Λs,t,Ms,t,Σs,t)

1 begin
2 ξ̃s,t ∼ πt(xs,t|xs,t−1, zs,t)

3 Re-sample by using the SIR principle

4 L = KClusterize(ξ̃s,t)

5 (is,t,λs,t,μs,t,σs,t) = DataAssociation(L, is,t−1)

6 Communicate belief (is,t,λs,t,μs,t,σs,t) to other agents
7 end
8 begin
9 Collect LS′ from a subset S ′ ⊆ S of cameras within a Δt

10 ξ̃S′,t ∼ π̃ =
∑

s∈S′ λs,t N (μs,t,σs,t)

11 Re-sample by using the SIR principle

12 G = KClusterize(ξ̃S′,t)

13 (Is,t,Λs,t,Ms,t,Σs,t) = DataAssociation(G, Is,t−1)
14 end

As a difference with other clustering methods (e.g., k-
means, Hierarchical Clustering or QT-Clustering), KClus-

terize does not require to know in advance the number of

clusters, has a linear complexity, and all the obtained clusters

reflect a Gaussian distribution.

Data association. An identity (i.e., a track number) has

to be assigned to each object, by associating the new

observations to the existing tracks. This is the crucial step

for any tracking algorithm. The direction, the velocity and

the position of the objects are the features involved in

the association algorithm. We consider two moving tracked

objects having the same direction if the angle between their

trajectories is less than 10◦.
The data association step is further complicated by com-

plete and partial occlusions, which can occur when objects

are aligned with respect to the camera view or when they are

close to each other. Our solution is to consider the collapsing

tracks as a group, instead of tracking them separately. When

two or more tracks have their bounding boxes moving closer

to each other, the tracker saves their color histograms and

starts considering them as a group - the histograms are used

as models for re-identifying the objects when the occlusion

phase is over. A group evolves taking into account both the

estimated trajectory and the observations coming from the

detector. When an occluded object becomes visible again,

the stored histograms are used to re-assign the correct iden-

tification number, belonging to the corresponding previously

registered track.

IV. ACTIVITY FORECASTING FROM NOISY

VISUAL OBSERVATIONS

Our objective in activity forecasting is the task of esti-

mating future actions of moving agents from noisy visual

96

Fig. 3. Set of non-uniform grid representation of the environment. Dynamic
regions (in red) are mapped with a set of dense grids, while the ones having
few interactions (in green) are represented with sparse and small grids. The
goal is highlighted by a blue cell of the grid.

input. We address this using an IRL procedure which works

on the output of the PTracking approach. In a certain sense,

the problem formulation ought to acknowledge that states

are not known exactly, instead being estimated through

a visual tracking process. So, the temporal modelling of

activity may perhaps be described in the language of partially

observable models. However, such models are rarely easy

to work with, especially so when the goal is efficient real-

time implementation on resource constrained robots. So,

we proceed by making an assumption akin to ‘certainty

equivalence’, modelling the temporal dynamics in terms of

an MDP, which is fed the output of the PTracking algorithm

which acts as state estimator. To the extent that the tracker

maintains a fully probabilistic representation of objects and

their motion and that the set of possible goals estimated by

the IRL method can be incrementally grown, this is a useful

compromise that could be further relaxed in future work.
A finite discrete-time MDP is a tuple (S,A,Psa,R, γ)

where: S is a finite set of N states, A = {a1, a2, . . . , ak}
is a set of k actions (i.e., North, West, South, East), Psa(·)
are the state transition probabilities upon taking action a in

a state s, R : S × A �→ R is the reinforcement function,

bounded in absolute value by Rmax and γ ∈ [0, 1) is the

discount factor. We adopt a standard IRL algorithm, due to

Russel et al. [13], in this work. Their work makes use of the

policy optimality theorem to derive a linear programming

formulation of IRL as follows:

min
∑N

i=1−xi + λ(r+i − r−i)
s.t.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xi ≤ (Pa∗ −Pa)(I− γPa∗)
−1R

∀ a ∈ A, i ∈ {1, . . . , N}
xi ≥ 0 i ∈ {1, . . . , N}
ri = r+i + r−i i ∈ {1, . . . , N}
|Ri| ≤ Rmax i ∈ {1, . . . , N}

(3)

Fig. 4. Trajectory-based model learnt by solving the IRL problem defined
in Eq. (3). The goal is represented by the function’s global maximum.

Here, Pa denotes a NxN matrix in which element (i, j)
gives the probability of transitioning to state j upon taking

action a in state i, Pa∗ denotes the current optimal policy,

obtained by combining the optimal policy at the previous

step and the output of the PTracking algorithm. In Eq. (3),

the non-linear 1-norm operator ‖R‖1 of the original problem

stated by Russel et al. has been linearised by adding two

more variables r+i and r−i for every ri variable with i ∈
{1, . . . , N}. The non-linear operator mina∈A, instead, has

been linearised by introducing N new variables xi where

i ∈ {1, . . . , N}. The linear programming problem defined

in Eq. (3) can be easily and efficiently solved using standard

techniques, such as the Simplex algorithm.

A. Inverse Reinforcement Learning Model

The result of solving the problem in Eq. (3) is the reward

function (for each goal), that captures both interactions and

movements of objects in the monitored environment. Future

actions may be forecasted and suspicious trajectories (i.e.,

anomalies from the model obtained via IRL) recognised in

advance. Since the problem defined by Eq. (3) is a discrete

optimisation problem, we need to discretise continuous vi-

sual observations coming from the PTracking algorithm (see

Section III). To this end, we propose a representation of the

monitored environment based on a set of non-uniform grids,

thus allowing for an effective and efficient representation

of the monitored environment. In this manner, portions of

the environment in which there are multiple interactions

are represented by a set of dense grids, while parts of

the environment that do not have particular interactions are

described by sparse grids.

Grid update. First, a uniform grid mapping the monitored

environment is constructed. Then, such a grid is periodically

updated based on the information provided by the PTracking

algorithm. High density locations are described richly by

increasing the granularity of the grid mapping around that

location, whereas parts of the environment having fewer

interactions are described sparsely. By adopting the non-

uniform grid representation, the proposed approach linearly

scales with respect to the size of the environment as well

as the computational resources required for solving the

optimisation problem. An example of the non-uniform grid

97

(a) Informatics Forum (b) HRI Laboratory (c) VIRAT

Fig. 5. Left: very dynamic environment representing the main entrance to our Informatics Forum. Center: a simulation of a small home environment in
our HRI laboratory with humans and robots. Right: VIRAT data set being also used by Ziebart et al. [1].

representation is depicted in Fig. 3, while a possible IRL

model associated with it is shown in Fig. 4, in which the

end goal is represented by the function’s global maximum.

B. Activity Forecasting and Anomaly Detection

Our approach can be summarised in terms of the following

key steps. The output of the optimisation process of Eq (3)

is a set of G reward function models, one for each goal,

MG
s per agent s, where s ∈ S . This allows us to generate a

policy πGi
s for each goal Gi ∈ G per agent s. We can now

build likelihoods over the set of goals G as follows.

Observed trajectory extraction. We gather object esti-

mates from the PTracking algorithm considering an arbitrary

temporal window (5s for our experimental evaluation). Hav-

ing acquired a set of trajectories U , we ground each trajectory

u ∈ U in every policy πG
s .

Policy comparison. At this stage, we get the best fitting

policy by comparing the target trajectory against a set of

trajectories drawn from potential optimal policies. We do

this using a combination of Fréchet distance and cosine
similarity, to allow for the possibility that the target trajectory

is merely a fragment of the overall optimal policy so that this

notion of geometric similarity is one that better captures our

notion of activity membership.

Goal prediction. We are finally able to predict in real-

time the goal toward which each moving object is likely to

be headed, by executing the policy that best matches the

movement pattern of every object. It could happen that a

trajectory u ∈ U does not match any model. This can happen

for two main reasons. The first is that the trajectory fragment

u is anomalous and refers to a suspicious activity pattern.

The second, which we cannot always rule out, is that there

may be a multitude of optimal policies that represent the

activity class or that the environment has changed leading to

new types of motion. The latter, however, can be recognised

by analysing the foreground model provided by the detector

algorithm because it will hugely differ from the background

model learnt so far. All learnt models are discarded until new

models are available.

Goal sampling. In the general case, goals may not be

defined ahead of time. In a setting such as a home environ-

ment, goals could be associated with routine activity and,

say, tools or objects frequently used by a human user. Here,

static points of interest can be conjectured from a relatively

inexpensive scene analysis, providing much needed contex-

tual structure of the environment. However, in a dynamic

scenario like an airport, train station or even a fast changing

construction or rescue site, this process may be infeasible

and the set of potential goals identified from surface level

analysis may be very large. This problem is compounded

by the lack of clear and persistently identifiable structure

in these rapidly changing environments. In these cases, we

could generate potential goals by analysing the information

provided by a tracking system (i.e., analysing trajectories of

all moving agents), and work with respect to this set.

V. EXPERIMENTAL EVALUATION

The framework has been tested in three different environ-

ments: the main entrance to our Informatics Forum, our HRI

laboratory and the VIRAT data set (Fig. 5). A quantitative

comparison, depicted in Fig. 6, demonstrates how our pro-

posed framework outperforms alternatives in terms of NLL -

Eq. (4), including a state-of-the-art approach of Ziebart et al.,
a Maximum Entropy Markov Model algorithm and a random

walk baseline procedure.

Comparison metric. In each experiment, we have one

demonstrated path, a sequence of states st and actions at,
generated by all agents for a specific configuration of a scene.

We compare the demonstrated path with the probabilistic

distribution over paths generated by our IRL algorithm using

the Negative Log-Loss (NLL) of a trajectory, as in [1], defined

as follows:

NLL(s) = Eπ(a | s)
[
− log

∏
t
π(at | st)

]
(4)

The NLL represents the expectation of the log-likelihood of

a trajectory s under a policy π(a | s). This metric measures

the probability of drawing the demonstrated trajectory from

the learnt distribution over all possible trajectories.

Experimental setup. We compare our framework against

the method proposed by Ziebart et al. in [1], a Maximum

Entropy Markov Model based algorithm and a random walk

baseline procedure in all scenarios. We use the same input

data and the same state representation for the random walk

baseline, the MEMM method and the proposed approach in

98

0

0.5

1

1.5

2

2.5

HRI Lab Informatics Forum VIRAT

M
ea

n
N

eg
at

iv
e

Lo
g-

Lo
ss

Activity Forecasting Performance

Proposed
Ziebart et al.
MEMM
Random walk

Fig. 6. Mean NLL of activity forecasting performance on chosen data sets.
Lower values mean better activity forecasting accuracy.

all the chosen scenarios and for the Ziebart et al. approach

on the HRI laboratory and Informatics Forum scenarios. We

report, instead, the result taken from the corresponding paper

of Ziebart et al. for the VIRAT data set.

HRI laboratory. This scenario simulates a small home

environment (up to 5 moving agents) in which points of

interest are extracted by analysing the tracking data. Robot

and people’s position and velocity estimates are provided

by the distributed tracker using two overhead cameras,

facing opposite directions but with overlapping fields of

view over the environment. In high density scenarios, the

activity forecasting task is made challenging by the limited

collision-free space in proportion to the physical size of the

agents involved. Such a constraint could force an agent to

dramatically change bearing to avoid a dynamic obstacle

while still approaching one’s target goal.

Informatics forum. We evaluate our approach according

to its performance in real-time tracking and activity fore-

casting in a natural human environment (up to 25 moving

agents). This is challenging due to numerous aspects, such

as the presence of agents with changing intentions, or

agents that are navigating with other latent constraints (e.g.,

maintaining a spatial formation with respect to other agents).

For this scenario, possible goals have been conjectured by

analysing the information provided by the tracking algorithm.

Our results show that, our activity forecasting algorithm

provides accurate beliefs over the possible set of goals.

VIRAT. The data set is designed to be realistic, natural

and challenging for video surveillance domains in terms of its

resolution, background clutter, diversity in scenes and human

activity/event categories. In order to fairly compare our IRL

approach against the state-of-the-art method of Ziebart et al.,
we choose goals as done in [1].

Discussion. In this work, we have access to trajectories of

normal behaviours that are used for the initial generation of

an MDP model through IRL, for each agent. Such a model

describes the preferred paths of an agent moving toward a

certain goal. The generated model is independent in terms of

agent’s velocity, hence a prediction of future agent motions,

having an arbitrary velocity with respect to the observed

one, is still possible by applying the IRL model. In the case

of dramatic changes in the environment dynamics, the IRL

model becomes essentially unusable due to this considerable

variation in the structure of the environment. Therefore, an

updated IRL model, taking into account these new changes,

is needed before forecasting agent intentions. This suggests

that the foregoing description is to be viewed as a template

of a framework that can be further enhanced with lifelong

and continual learning towards efficient activity forecasting

for a practical social robot.

VI. CONCLUSIONS

We presented a novel framework for estimating the future

movement intentions of goal-oriented agents in an inter-

active multi-agent setting. We achieve this by combining

Inverse Reinforcement Learning with a Markov Decision

Process model of motion, and a distributed multi-camera

tracking algorithm. The resulting reward functions represent

the agent’s set of possible future activities, on which forecasts

are made through a probability distribution function via

comparison with real-time observed agent behaviour. This

method is evaluated for accuracy and robustness in dense and

dynamic environments with autonomously planning robots

and pedestrians. Our results show that this is an effective and

computationally efficient alternative to models that depend

either on offline training of pedestrian trajectory models or

on physical scene features and prior knowledge of goals.

REFERENCES

[1] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity
forecasting,” in European Conference on Computer Vision, 2012, pp.
201–214.

[2] A. Bordallo, F. Previtali, N. Nardelli, and S. Ramamoorthy, “Coun-
terfactual reasoning about intent for interactive navigation in dynamic
environments,” in International Conference on Intelligent Robots and
Systems, 2015, pp. 2943–2950.

[3] F. Previtali and L. Iocchi, “PTracking: distributed multi-agent multi-
object tracking through multi-clustered particle filtering,” in Interna-
tional Conference on Multisensor Fusion and Integration for Intelli-
gent Systems, 2015, pp. 110–115.

[4] F. Previtali, G. Gemignani, L. Iocchi, and D. Nardi, “Disambiguating
localization symmetry through a multi-clustered particle filtering,” in
International Conference on Multisensor Fusion and Integration for
Intelligent Systems, 2015, pp. 283–288.

[5] D. D. Bloisi, F. Previtali, A. Pennisi, D. Nardi, and M. Fiorini,
“Enhancing automatic maritime surveillance systems with visual infor-
mation,” Transactions on Intelligent Transportation Systems, pp. 1–10,
2016.

[6] J. K. Aggarwal and M. S. Ryoo, “Human activity analysis: a review,”
ACM Computing Surveys, vol. 43, no. 3, p. 16, 2011.

[7] J. C. Nascimento, M. A. T. Figueiredo, and J. S. Marques, “Trajec-
tory classification using switched dynamical hidden Markov models,”
Transactions on Image Processing, vol. 19, no. 5, 2010.

[8] A. Jaimes and N. Sebe, “Multimodal human-computer interaction: a
survey,” Computer Vision and Image Understanding, vol. 108, no. 1,
pp. 116–134, 2007.

[9] A. Ekin, A. M. Tekalp, and R. Mehrotra, “Automatic soccer video anal-
ysis and summarization,” Transactions on Image Processing, vol. 12,
no. 7, pp. 796–807, 2003.

[10] C. G. M. Snoek and M. Worring, “Concept-based video retrieval,”
Foundations and Trends in Information Retrieval, vol. 2, no. 4, 2008.

[11] D. L. Vail, M. M. Veloso, and J. D. Lafferty, “Conditional random
fields for activity recognition,” in International Conference on Au-
tonomous Agents and Multiagent Systems, 2007, p. 235.

[12] L. Wang, Y. Qiao, and X. Tang, “Latent hierarchical model of temporal
structure for complex activity classification,” Transactions on Image
Processing, vol. 23, no. 2, pp. 810–822, 2014.

[13] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning,” in International Conference on Machine Learning, 2000,
pp. 663–670.

99

