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Abstract— We present a technique to classify human actions
that involve object manipulation. Our focus is to accurately
distinguish between actions that are related in that the object’s
state changes define the essential differences. Our algorithm
uses a latent variable conditional random field that allows
for the modelling of spatio-temporal relationships between the
human motion and the corresponding object state changes.
Our approach involves a factored representation that better
allows for the description of causal effects in the way human
action causes object state changes. The utility of incorporating
such structure in our model is that it enables more accurate
classification of activities that could enable robots to reason
about interaction, and to learn using a high level vocabulary
that captures phenomena of interest. We present experiments
involving the recognition of human actions, where we show that
our factored representation achieves superior performance in
comparison to alternate flat representations.

I. INTRODUCTION

Among the many perceptual modalities available to a
modern robotic system, vision is perhaps the richest in
terms of the variety of information it captures about the
external world and about the agents within that world. This
very richness also makes interpretation highly ambiguous
and often brittle. One reason why a robot might try to
interpret the visual feed is to identify actions and activities
being performed by agents in the environment. Given the
aspirations of the robotics community to introduce robots
into human environments, robots should be competent in
interacting with people and recognizing human actions.

Activity recognition is typically conceptualised as a clas-
sification problem, extracting an underlying context from
variability in motion, shape and other confounding factors.
The focus of this paper is on a method to improve this
process of extracting activity categories, by jointly analysing
the actions of the human user and of the object that is the
target of the activity. The goal of such a method is to enable
the identification of activity categories that are behaviourally
meaningful, hence useful in representing and learning of
higher level interactions.

Early computer vision methods for action classification
were primarily concerned with variability in motion, e.g., of
body pose. While these approaches have enjoyed successes
in applications that require distinctions between sequences
of poses, they have often succeeded by ignoring interactions
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with the environment that change the context of the action.
In this paper, our focus is on trying to model this notion
of context as well. Unlike methods that are based, say, on
features of single frames within the activity, we model spatio-
temporal interactions with objects that define the classifica-
tion outcome of an action. This makes our method suitable
for the understanding of activities which are best defined by
the joint evolution of the state of an object in the environment
and the changes in body poses that cause that state to change.

We present a technique that learns to classify such inter-
actions, from video data, and performs better than alternate
baselines due to its use of the joint information in the
recognition process. We base our work on object information,
without explicitly identifying the object, showing that spatio-
temporal relationships are sufficient to improve the perfor-
mance of activity recognition. We believe this is better suited
to the needs of incremental and lifelong learning because the
notion of tracking the motion of a not-yet-fully-modelled
object conceptually precedes the more sophisticated task
of identifying and making inferences about the detailed
properties of the object in question.

In order to explain the concept intuitively before jumping
into detail, consider the fact that two actions - picking up
and slightly pushing an object - can appear highly aliased
and difficult to disambiguate unless one also considers what
happened to the object: did it leave the hand and roll away
or did it move with the hand away from the surface of a
table? The disambiguating signal is neither the pose of the
hand nor the identity of the object. Instead, it is the joint
hand-object movement. Incorporating such structure into our
models is key to learn ‘symbolic’ relational concepts.

In this paper, we build upon previous work on action
classification based on state of the art statistical learning
techniques. Given our intention to work with sequential data,
we adopt a discriminative sequential classifier, Conditional
Random Fields(CRF)[1]. Our model is a variation of the
hidden state CRF[2], which allows us to consider the object-
action spatio-temporal dependencies upon action classifica-
tions. The method is experimentally evaluated in Section
IV, where we show that mutually modelling actions and
object movements can significantly boost the recognition
performance, when these actions involve objects.

II. RELATED WORK

The idea that objects and actions are intertwined and
highly dependant was originally proposed by the psychol-
ogist James J. Gibson, who coined the term affordance[3].
Affordance refers to a quality of an object or the environment



that allows an agent to perform an action. In the field of
robotics, the idea of affordances has been explored from
various viewpoints. One popular approach is to apply known
motor actions to either segment objects or learn about the
affordance possibilities [4][5]. Other approaches consider
the role of objects in imitation learning and use them to
support motor experiences[6]. Kruger et. al.[7] introduced a
framework that describes how object state changes can help
to form action primitives. In other cases human demonstra-
tion is used to visually infer object affordances[8]. Further-
more, Aksoy et. al. [9] represent relations between objects
to interpret human actions in the context of learning by
demonstration.

There is a large corpus of work in human activity recog-
nition in computer vision and pattern recognition illustrating
its utility as a test case for sequential classifiers. Different
forms of input to recognition methods include still images,
video streams and video with 3D data. Approaches such as
those presented in [10][11] combine pose estimation and
object information for single frame inference, to learn the
mutual context of actions and objects. These methods have
been tested on databases where objects provide enough in-
formation, but almost no temporal dependencies are required
to classify the image, e.g. holding a racket and taking the
serving pose is very likely to be assigned with playing
tennis. In our work, we are interested in recognizing more
subtle actions that differ at a lower level, where object
recognition itself is not enough to generally characterize the
activity. The same action can be performed with multiple
objects, thus we focus especially on temporal dependencies.
Other methods[12] to classify activities from videos create
visual vocabularies of features that capture spatio-temporal
statistics, and then feed them into well established classifiers
like SVMs or AdaBoost.

Kjellstrom et al.[8] use a Factorial CRF to simultaneously
classify human actions and object affordances from videos.
The difference from our work is that they use object detection
that assumes known object instances and accurate hand pose
segmentation. This is a valid setting for imitation learning,
yet difficult to achieve in other activity recognition scenarios,
especially when we do not yet have detailed object labels.
While the FCRF and HCRF methods used in this paper are
similar in the way they split object and action information,
Kjellstrom et al.[8] consider factorization separately and
predict object-action combinations, however we use a joint
factorization of object and action hidden states to classify
them. Additionally we use hidden states to explore structure
from raw input, rather than manually annotating, sequences
which contributes to make the supervision part of the algo-
rithm less tedious.

Unlike the previous work [13][11] on classification with-
out an explicit notion of time scale, we also want to model
long term temporal relationships of the actions. In this
paper, we describe a classifier that accounts for contextual
information, and we show that the state of the object can
greatly improve the classification of subtle actions. A key
feature of many actions, is that they consist of segments of

simpler homogeneous motions. Our approach exploits this
observation by splitting the trajectory into smaller segments
without losing valid information from the motion. Indeed, a
key attribute that distinguishes our work from related prior
work is that by working at a larger temporal scale, we capture
structure in the activities somewhat more efficiently and in a
way that is better suited to our applications of interest, such
as human-robot coordinated actions.

III. METHOD

We use a hidden state CRF, which is a discriminative
probabilistic model that defines a conditional distribution
over sequence labels given the observations. In the remainder
of this section we present our training and classification
methodology.

A. The model: Hidden State CRF

Hidden state Conditional Random Fields (HCRF) are
random fields that include latent variables in their structure,
shown to perform well in a wide range of problems. The CRF
model was first introduced by Lafferty et al.[1] and has been
popular in natural language processing, although it has been
increasingly gaining traction in computer vision. Quattoni[2]
extended the CRF framework to incorporate hidden variables
in order to capture the spatial relationships of object parts
in images, while Wang et. al.[14] used a HCRF for gestural
recognition.

Like any undirected graphical model, we represent vari-
ables as nodes(V) and edges(E) accounting for variable cor-
relation, forming a graph G = (V, E). The graph is factorized
and represented as a conditional probability distribution. One
of the major advantages of the HCRF is that the latent
variables can be dependent on arbitrary features of the obser-
vation sequence, giving them the ability to capture long-term
temporal, spatial or contextual dependencies. The hidden
variables at each time t have the potential to select arbitrary
subsets of observations, giving them the ability to depend
on observations from any frame of the sequence. Selecting
subsets of the full observation set is commonly used in image
processing as a way to express spatial relationships. We
choose to separate object-related features and body based
features connected to different latent variables at each time
step t. We create nodes that depend on the fobjt object
observations, and nodes that depend on fskelt , the skeleton
tracking observations.

The observation sequence is represented as X =
[x1, x2, ..., xT ], and each observation xt is an object-action
pattern represented by 2 feature vectors, fskelt ∈ <18, fobjt ∈
<6. The model has two sets of latent variables, sobj =
[so1, s

o
2, ..., s

o
T ], and sskel = [ss1, s

s
2, ..., s

s
T ], each node having

zero and first order dependencies. The connectivity of the
model is represented in Figure 1. Each pair of nodes is
assigned to a different set of hidden states according to its
type. Latent variables referring to skeleton ssi are assigned
hidden state values from the set hsi ∈ Hs, and object
variables soi , are assigned from a different set hoi ∈ Ho. The



conditional probability distribution of label class is expressed
as

p(y|x; θ) =
∑
s

p(y, s|x; θ) =
1

Z(y|x; θ)

∑
s

eΨ(y,s,x;θ)

We denote as s = [{so1, ss1}, {so2, ss2}, ..., {soT , ssT }] a chain
of pair nodes(object - skeleton) and their states from their
corresponding sets. The normalizing partition function is
given by

Z(y|x; θ) =
∑
y∈Y,s

eΨ(y,s,x;θ)

The model is factorized through the potential function
Ψ(y, s; θ) ∈ <. The potential function is parametrized by
θ, and its purpose is to measure the compatibility between
the observation sequence X , the hidden state configuration,
and a label y. The parameter vector θ has 3 components
θ = [θv, θe, θy]. Each of the three vector components is used
to model a different factor of the graph. The first compo-
nent θv models the dependencies between the raw features1

fskelt , fobjt and the hidden states hi ∈ Hs , hi ∈ Ho. The
length of the vector θv is (ds × |Hs|) + (do × |Ho|). The
component θe models the connectivity between the hidden
states, which, for a fully connected graph like the one we
use, has length for (|Y |×|Hs|×|Hs|)+(|Y |×|Ho|×|Ho|)+
2 × (|Y |×|Hs|×|Ho|). The θy vector corresponds to the
links between the hidden states and the label node y, and
is of (|Y |×|Hs|+|Y |×|Ho|). We define Ψ(y, s, x; θ) as a
summation along the chain

Ψ(y, s, x; θ) =

T∑
j=1

ϕ(fsj , θ
v[sj|s]) +

T∑
j

θy[y, sj|s]

+

T∑
k=1

ϕ(fok , θ
v[sk|o]) +

T∑
k=1

θy[y, sk|o]

+

T∑
j=2

(
∑
k=s,o

θe[y, sj|k, sj−1|k]) + θe[y, sj|o, sj|k]

In the above definition of Ψ(y, s, x; θ), the function ϕ is
the inner product of the features at time step j and the θv

parameters of the corresponding hidden state. The θy[y, hj ]
term stands for the weight of connection between the latent
state and the class y, whereas θe[y, hj , h

′] measures the
dependency of state hj to state h′ for the given class y.

The above graphical model is an abstract way to think
of learning from sequential data, and may be combined
with a variety of features depending on the application. It
can be expanded to work with a variety of human-object,
human-environment or even human-human interactions. In
this paper we will focus on a specific setup that we use in
our experiments. In this setup, we wish to classify the type
of activity involving a person manipulating objects in the
scene.

1In cases were the observation window is ω > 0, then ft =
[ft−w, ft+w], so as to include all the raw observations of the time window
ω.
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Fig. 1: A segmented sequence is shown at the bottom of the
figure. White nodes represent latent variables of the model,
blue lines represent object-related factors, while red lines
are used to represent action-related factors. This allows our
model to explicitly distinguish between action and the out-
come of an action on the manipulted object. In Conditional
Random Fields, the latent variable models the dependence
between each state and the entire observation sequence in or-
der to deal with the variable length of observations each state
is dependant on a window of observations, [xt−ω, xt+ω].

B. Implementation

At each given time step we track a set of features that
correspond to the body posture of the person and the object
that is being manipulated. We use the skeleton tracking[15]
that is provided with the OpenNi SDK2, the tracker provides
18 joint positions, ji = {xi, yi, zi}. The object detection
routine is performed at initialization of the algorithm. As-
suming that all objects are supported on a plane we try to
find the largest plane that fits our point cloud. Following
the plane fitting process we identify Euclidean clusters of
points whose projection falls into the convex hull of the plane
points. Each cluster is treated as a potential object, and only
objects that fall within close distance to the user’s hands are
considered for tracking. For object pose tracking, we use an
of-the-shelf Monte Carlo algorithm, created by Ryohei Ueda
and implemented as part of the Point Cloud Library[16]. To
calculate the likelihood of the poses it uses weighted metrics
based on point cloud data and RGB color values from the

2The OpenNI framework is an open source SDK, more info:
http://www.openni.org



Fig. 2: Joint positions are transformed to a new coordinate
system with x-axis aligned to the mid point of the hips and
the left hip, y-axis defined by the mid point of hips and the
shoulder center, while z-axis is the normal defined by x-y
plane.

video stream. Object pose information at each time step t is
represented as a 6D vector containing position and rotation
vectors, ot = {x, y, z, roll, pitch, yaw}.

While the combination of depth and intensity images can
provide a rich set of features, our strategy is to classify
the actions with a minimal set. This decision allows us to
stress the importance of learning the structure of interaction
between object and body motion. The temporal relationships
between the state distribution of human actions and the ob-
ject’s spatial changes affect the classification of a sequence.
We represent a sequence of length T as X = [x1, x2, ..., xT ],
and each observation at time t is composed of fskelt , fobjt ,
which are the features extracted from the skeleton tracking
and features from object tracking respectively.

1) Pose features: To create the pose features, we use the
3D body joint locations to build a compact representation
of postures. The Kinect sensor offers a real-time estimation
of joint positions in the scene. To create our representation
we use 6 joints, L/R shoulder, L/R elbow and L/R hand.
We transform the positions to a skeleton centric coordinate
system and we take the center of hips as the center of
the coordinate system, Figure 2 shows the axes of the
new reference frame. By choosing a frame transformation
aligned to the direction the person is facing, the skeleton
configuration becomes independent of the viewpoint. The
Cartesian coordinates of each joint are transformed into
spherical coordinates and the radius is omitted, each joint is
represented by a tuple jit = (ϕit, θ

i
t). The resulting viewpoint

invariant feature vector has length of 6×2 = 12.
2) Hand features: While pose features capture the static

joint configuration we also want to include dynamic informa-
tion about the motion performed at each time step. In order
to incorporate motion patterns to our feature set, we compute
the joint velocities of the L/R hand.

3) Object features: The object tracker provides informa-
tion about the trajectory of an object’s center of mass. We
use the trajectory to compute the object velocity and the
distances from the head joint, L/R hand joint positions. The
object information is a 6D vector consisting of the 3 distances
and the object’s velocity.

Fig. 3: Top: Joint velocities at each timestep. Bottom: Shows
the normalized sum of squared velocoties. The green trian-
gles note the split positions. This figure is best viewed in
colour.

C. Managing trajectories

A typical trajectory has a length of 60-250 frames de-
pending on the class. Our classification model is a dynamic
template model, meaning that learned parameters are copied
and reused in each step with different inputs. The label of
the sequence is estimated by summing the potentials of each
frame belonging into a specific class. Long sequences tend to
result in error accumulation over time, which has an adverse
effect on classification. To alleviate this problem, trajectories
are split using a heuristic procedure that detects similar
moving patterns and merge them into a single block. We
take advantage of the fact that joint speed profiles consist of
an accelerating motion segment, a maximum speed segment,
and a decelerating segment. Our heuristic sums the squared
speed of all joints and then finds the peaks and valleys in
the new signal as in Fig.3, subject to some constraints, e.g.
minimum thresholds for peaks and valleys and a minimum
length of 5 frames for a split to be valid. The mean velocity
of each joint is the new feature set for a segment. Merging
similar frames into a single observation variable has the ad-
vantage of creating shorter sequences and thus shorter latent
variable chains. While this particular trajectory segmentation
method is a simple heuristic, it does manage to capture
motion changes and to segment homogenous parts of the
motion. Thus, it exploits the full power of our model which
relies on capturing temporal correlations between varying
states. Alternate trajectory segmentation methods could be
used as drop in replacements without altering our overall
arguments.

D. Inference and Learning of Parameters θ∗

Given a set of parameter values θ∗ and a new sequence
of observations X , the label y∗ can be computed as

y∗ = argmaxy∈Y P (y|x, θ∗)

Learning in conditional random fields is treated as an
optimization problem, where a θ is estimated through the
maximization of the objective function(Eq. 1). The likelihood
term of the objective function, logP (yi|xi; θ), is calculated
by loopy belief propagation.



L(θ) =

N∑
i=1

logP (yi|xi; θ)−
||θ||2

2σ2
(1)

θ∗ = argmaxθL(θ) (2)

where N is the total number of training sequences in
the dataset D = {xi, yi}, i = 1, ..., N , and θ are target
parameters. The second term, − ||θ||

2

2σ2 , is the L2 regularization
penalty that we use to avoid overfitting. In a simple CRF,
with no hidden states, the likelihood function L(θ) is convex
taking the form of an exponential of the potential function.
However, in the case of hidden state CRF, we need to
marginalize over the hidden states and thus create a sum-
mation of exponentials which makes our objective function
non-convex. To optimize this function we use gradient ascent
with various starting points to avoid local maxima. The
optimization algorithm we chose is the L-BFGS[17] which
is shown to perform well with a large number of parameters.

IV. EXPERIMENTAL RESULTS

To evaluate how our system deals with actions that result
in object state changes, we have created a new dataset3 of
people using various objects. Our dataset consists of actions
with substantial motion similarities, making it hard to naively
distinguish between them without knowing the effect on
the objects of the environment. Our baseline comparison
is against two different implementations of the HCRF[14].
While HMM models are ubiquitous tool for modelling se-
quential data, applying them on high-dimensional real-valued
observations is not a trivial task and all freely available meth-
ods, that we know of, do not deal with high dimensionality.
For this reason, we are unable to compare against alternatives
such as HMM variants. We report on experiments with the
following models:
• B model: a simple HCRF model with a single chain of

latent variables trained on action features only.
• B-O model: a HCRF model with a single chain of latent

variables and trained on action and object features that
are modelled through a single observation variable.

• Full Model: Our model as explained in section III.
These models have been selected to bring out the impor-

tance of object interactions in activity and behaviour under-
standing. HCRF models perform reasonably in classifying
sequential data, however we show that altering the basic
model to explicitly consider the interaction boosts the overall
recognition performance.

A. Dataset

Our overall goal is to model human activity that involves
object manipulation. In order to do that we had to create
a dataset that is suited to our needs. We recorded 918
sequences from 12 different people. We selected 5 different
actions that have similar appearance and statistics if seen out
of context (i.e., without the object information). The action

3Our dataset will be made available at:
http://wcms.inf.ed.ac.uk/ipab/autonomy/

Fig. 4: Images from the action sequences, from top to bottom,
images show action: drink, push, stack, read

set we recorded is based on the categories A={drink, push,
pickup, stack objects, read}, as in Fig. 4. The actions were
not thoroughly scripted, as each person was given simple
oral instructions about each action and was not given an
explicit instruction regarding preferred or typical trajectories
to follow. This is how we expect regular people to behave in
everyday base. On each repetition, users freely choose how
to perform the action, which hand to use, what the starting
position of the object should be, speed of execution, etc.
Most subjects did not repeat the same motion, so the majority
of the recorded sequences have a wide range of motion
variations. The actions were recorded with a Kinect camera
at a rate of 30Hz, and the time length of each sequence were
from 50 frames to 250 frames depending on the action class.

All the sequences were recorded in our lab in a fairly
generic setting (Fig. 4). Users stood in front of a table on
which the objects of interest were placed, at distance of
2 ∼ 2.5 meters away from the Kinect camera. The difficulties
in recognizing motions in the dataset are primarily related
to motion similarity and occlusions. Occlusions seriously
affect the performance of the skeleton tracking algorithm,
which is really designed to work best in an occlusion free
environment. In order to strengthen our hypothesis and test
our model, we chose highly similar (i.e., aliased) motions
to be part of the dataset. For example, reaching to pick an
object produces a similar body posture sequence as pushing
an object on the table. Similarity in motion can be found in
picking and stacking objects, the reaching part of the motion
and the withdrawing of the person are very similar.

B. Models and implementation details

The full model is expected to learn the spatio-temporal
action - object state transitions and be able to outperform
its simple counterpart where no information fusion is per-
formed. To optimize performance, we search for parameter
configurations, keeping the one with the best score on the
cross validation set. The free model parameters that need
to be determined are the number of hidden states in the
sets, Hs,Ho, the observation window length, the standard
deviation (σ) of the L2 regularization factor and the starting
values of θ for the gradient search. For hidden states, we
experimented with a number of different state sets, varying
from 3 to 8 for the object latent variables and from 4 to
12 for the latent variables that depend on skeleton nodes.
Based on the average sequence length we experimented with
window sizes of ω = 0, 1, 2. After determining the best pair
of hidden state numbers, we set them to a constant value and



Fig. 5: Full model with different observation windows ω =
0, 1, 2, reporting the F1 score for each class. Average F1

scores for ω = 0, 1, 2 are 81.35%, 87.17% and 92.96%
respectively.

then tuned the L2 standard deviation parameter. The σ of the
regularization term was set to σ = 1k where k=-3,...,3.

To investigate how information fusion affects the classifi-
cation performance we implemented two alternative hidden
state CRF models as comparison methods. Both models
contain a single layer of latent variables, meaning we use one
latent variable per time-step to form single a chain for each
sequence. The first model is trained only with body motion
information (noted as B model), the object features are
neglected, while in the second HCRF (noted as B-O model)
the object features and body motion are modelled through a
single observation variable XT . Our aim is to show that we
can gain accuracy compared to a model that doesn’t consider
object context, but also showing that modelling the action
and the object information through different observation and
latent variables can further improve the performance of the
model. Both models have the same free parameters, number
of hidden states, regularization factor and the length of the
observation window. Parameters are tuned via the same grid
search technique as mentioned before.

C. Results

To evaluate the performance of the different models we
report the F1 score which is a measure of accuracy that
considers both the precision and recall. The F1 score is
defined as F1 = 2 × precicion×recall

precicion+recall . In figure 5, we
summarize the F1 score of our approach for each class with
3 different observation window lengths( ω = 0, 1, 2). For
each window parameter we report the best configuration of
hidden states and regularization term, which differs for each
model. The bar graph shows performance is correlated to
the temporal relationships between the hidden states and
the observations. Figure 6 shows the confusion matrix of
our best results on this dataset with average F1 score for
all the classes of 92.96%. From the confusion matrix, we
can see that the lowest classification rate corresponds to
the pick class. Picking is a sub-event occurring in every
action of the dataset, so in noisy sequences or sequences

Fig. 6: Confusion matrix of our test results with average F1

score 92.96%. Parameters: ho = 4, hs = 7, ω = 2.

which have been mistreated during the trajectory splitting,
this can cause misclassification. Intuitively when we consider
spatio-temporal process we think of them in terms of past
state, present state, and future state and the change of state,
encoding the past-present-future information in each hidden
state and not only through latent state transitions creates a
more powerful representation of the action.

The full model appears to perform well on our current
dataset, but in order to show the importance of object
information, it is crucial to compare it to similar models that
discard the object information or do not implicitly model it.
In Figure 7 we show the performance of the three models
in each class and in Figure 8 we report the mean F1 score
of each model with the corresponding standard deviation.
Between the simple B model and the full model, there is a
significant increase in performance by 13.84%. In Fig. 7,
we see that B-Single performs better than our model on
the drinking action and matching our models performance
on the stacking action. The drinking action is particularly
distinctive, so that even the simpler baseline method is
already able to capture it and our method provides no added
advantage here. The case of the stacking action is more
interesting in that the real reason for B-single doing well
is a favourable class bias. The stacking action has a similar
profile to the pickup action for the whole length of the
sequence, while at the start of the sequence it shares profiles
with read and push. This class bias pushes the score for stack
to equalize the performance of our model. Adding the object
information to the training set for the B-O model increases
the average F1 score from 79.11% to 88.83%, and overall
there is a lower variance in the accuracy between classes.
Comparing the B-O model with our full implementation, we
observe a notable increase in the average F1 score from
88.83% to 92.96% while halving the standard deviation
between class accuracy.

V. CONCLUSIONS

The main contribution of our paper is a novel method for
activity modelling. Specifically, we present an algorithm that
improves upon the state of the art in recognition of actions,
which is a key ingredient of HRI where a robot needs to
understand the goals and context of human action based on
overt behaviour as seen from changes in body pose. Our



Fig. 7: F1 scores of each class for different models. B single
layer: Only body motion features are trained. B-O single
layer: Both body motion and object features are modeled
under the same observation variable. Full Model:The full
model as presented in Section III.

Fig. 8: F1 scores for each model, class mean and its standard
deviation. Our full model achieves the best result while
maintaining a very low variance between class accuracy. Our
implementation shows a more robust approach on how one
can jointly classify actions that result to object state changes.

main observation is that categorization is vastly improved
when we jointly model the changes in body pose and the
state of the object that is being acted upon, i.e., the effects
on the environment of the person’s movement. We do this in
the setting of a state of the art statistical learning algorithm
for discriminative classification, the HCRF. Our experiments
demonstrate that thinking of actions in terms of motion and
outcome yields significant overall improvement. We view
this work as a first step in understanding how to devise
the ability to decode human activity at finer levels, which
lead to improved human - robot interactions and learning
by demonstration capabilities. Our future plan is to continue
this investigation to understand how different time scales, the
much longer as well as the subtle but shorter, can be captured
in a similarly factored way.
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