
Giving Advice to Agents with Hidden Goals

Benjamin Rosman1 and Subramanian Ramamoorthy2

Abstract— This paper considers the problem of providing
advice to an autonomous agent when neither the behavioural
policy nor the goals of that agent are known to the advisor. We
present an approach based on building a model of “common
sense” behaviour in the domain, from an aggregation of
different users performing various tasks, modelled as MDPs, in
the same domain. From this model, we estimate the normalcy of
the trajectory given by a new agent in the domain, and provide
behavioural advice based on an approximation of the trade-off
in utility between potential benefits to the exploring agent and
the costs incurred in giving this advice. This model is evaluated
on a maze world domain by providing advice to different types
of agents, and we show that this leads to a considerable and
unanimous improvement in the completion rate of their tasks.

I. INTRODUCTION

Consider an agent, the explorer, moving about a large
hospital, with the intended destination of a particular ward,
but no idea where to find that ward. Now consider a second
agent, an autonomous advisor installed throughout the “intel-
ligent building”, was watching the progress of the explorer,
and noticed that it seemed to be lost. In this case, it would
be desirable to provide some advice on likely directions in
which to move. Without knowing the intended target of the
explorer, but by observing its behaviour, the advisor should
make suggestions based on the most commonly used paths
through the hospital – the “common sense” knowledge of the
building. This could guide the explorer towards major wards
and waiting areas, and away from service regions. This paper
examines this question of how and when to provide advice
to an agent with unknown goals.

Furthermore, the advisor does not know how much advice
is needed by the explorer. If the explorer truly has no idea of
what it is doing, then more information should be provided.
On the other hand, especially if the advice is given via a
mobile robot component, this is a costly resource that could
be moved around to be shared between people – so, constant
advice really is something to be minimised. Additionally, we
assume that the advisor does not know if the agent is human
or artificial, nor if it is acting randomly, with purpose, or
learning. This situation is caricatured in Figure 1.

This is an important problem for both fixed-policy (single
episode) and learning agents. With the help of advice, a
fixed-policy agent can complete a task sufficiently faster than
it would have otherwise. Similarly, advice can be a boost to

1Benjamin Rosman is with the Institute of Perception, Action and
Behaviour in the School of Informatics, University of Edinburgh, UK,
and Mobile Intelligent Autonomous Systems (MIAS), CSIR, South Africa
benjros@gmail.com

2Subramanian Ramamoorthy is with the Institute of Perception, Action
and Behaviour in the School of Informatics, University of Edinburgh, UK
s.ramamoorthy@ed.ac.uk

Fig. 1. The envisaged scene: an agent (the human) is exploring some
environment. Its path is monitored by an autonomous advisor, which can
then deploy some resource (a robot) to offer advice to the agent.

a learning agent in terms of both speed and safety, in that
exploration can be guided away from dangerous or useless
regions of the domain.

We propose to address this problem by learning a model
of “common sense” behaviour over the entire domain, and
marginalising over the different tasks. Offline, we learn
a model of typical users in this domain in the form of
distributions over action selection, from expert agents car-
rying out different tasks in the same domain. Online, a
new user enters the domain, such that both the behavioural
policy and the goal of this user are unknown a priori. The
advisor continually estimates the performance of the user by
comparing behaviour to the common sense model, and then
based on this, provides advice in states where it is estimated
to be needed. In this way, we regard advice as a data-driven
policy selection mechanism for guiding an agent locally [1].

Basing advice on the behaviour of experts in the same
space has limitations, in that it depends on the experts
visiting the same locations and performing the same actions
as would be required by the explorer. However, we wish to
advise based on the way in which the domain is used – its
functional semantics. If a particular task has not been seen
before, there is nothing we can do regarding advising about
that task, but there is still no need for the agent to collide
with walls or enter dead ends. We consequently reason at
the level of action distributions, rather than tasks, as we
can leverage the fact that there are overlaps between the
behaviours needed for different tasks.

Another example of this problem is that of building an
autonomous advisor to teach humans or other autonomous
agents to play complicated video games where game-play is
not linear, and there are many different subgoals. Many mod-
ern games offer environments where players may progress
through the game in any of a number of different ways,

or even combinations thereof. Learning the combination of
all these play styles and subgoals would not be feasible,
particularly if the data is sparsely provided through very few
instances of each. Consequently, learning a model of com-
mon sense behaviour provides the advisor with a compact
description of reasonable courses of action.

After defining preliminaries in Section II, we discuss ac-
tion priors as a model of common sense domain behaviour in
Section III. Our general formulation and proposed approach
are presented in Section IV, and experimental results are
shown in Section V. Related work is discussed in Section
VI, and concluding remarks are given in Section VII.

II. PRELIMINARIES

In order to define a common sense model of agent be-
haviour, we assume that a number of agents perform various
different tasks, all within the same domain. This domain
is constant and is defined as D = (S,A, T, γ), and each
different task is a Markov Decision Process (MDP) defined
by τ = (D, R, S0). S is a finite set of states, A is a finite
set of actions available to the agent, T : S ×A× S → [0, 1]
is the state transition function where T (s, a, s′) defines the
probability of transitioning from state s to state s′ after taking
action a, R : S × A × S → R is the reward function,
where R(s, a, s′) is the reward received by the agent when
transitioning from state s to s′ with action a, and γ ∈ [0, 1]
is a discount factor.

A policy π : S × A → [0, 1] for solving an MDP is a
distribution over state-action space. The return, or utility,
generated from an episode of running the policy π is the
accumulated discounted reward Uπ =

∑
k γ

krk, for the
reward rk received at step k. An optimal policy π∗ =
arg maxπ U

π is one which maximises the total expected
return of an MDP.

III. PRIORS OVER ACTION SELECTION

A set of tasks, defined as MDPs in Section II, rely on
access to a common domain D, providing the infrastructure
for the tasks to be situated within the same domain. This
decomposes the environment such that S, A and T are fixed
for all tasks, while each varies only in reward function R.

In order to advise the explorer, the advisor learns a model
of “normal” behaviour in the domain. This is acquired by
learning the action priors [2] of the domain. For an unknown
but arbitrary set of tasks T = {τ}, each with a hidden goal,
and corresponding expert policies Π = {πτ}, we learn for
each state s ∈ S a distribution θs(A) over the action set
A. This distribution is the action prior, and represents the
probability of each action in A being used by a solution
policy traversing through state s, aggregated over tasks T .

From a set of policies, each selecting actions in the
same state s according to different distributions, a state-
based model is learnt of typical behaviour marginalised over
all known tasks in the domain, without requiring explicit
knowledge or identification of those tasks themselves. Thus,
given a state s, if one action is favoured by all trajectories
through s, then that action should be preferred by any new

trajectory exploring through s. Conversely, any action which
is not selected by any trajectory passing through s is likely
to have negative consequences, and should be avoided. By
studying the policies from multiple tasks, a model of the
structure of the underlying domain can thus be learnt, in
terms of identifying the set of behaviours which are invariant
across all tasks in the domain.

In general, different types of agents may have different dis-
tributions over their expected behaviours, e.g. hospital staff
vs visitors. This can be taken into account in our framework
by augmenting the state space with some description of the
agent, if that sensing information is available, e.g. if they are
wearing a uniform or name tag.

Although the mechanism of action priors is defined as
learning from policies Π, we consider trajectories as samples
thereof, and use these to update the action prior model. We
define Π as a set of expert policies, where an expert is
considered to be an agent trained at a particular task. This
includes, but is not limited to, optimal policies for the task
MDPs. These need not be optimal, and trajectories generated
by any other systematic choice model, including those not
explicitly optimising a utility function, are equally accept-
able. The training data should provide a set of systematic
biases which can be formalised as action priors, in order to
see performance benefits from this advice.

A. Learning Action Priors

Consider a setting in which multiple agents have each
solved potentially different tasks in D, and have solution
policies. For each state s ∈ S, model the action priors
θs(a), ∀a ∈ A using a Dirichlet distribution, by maintaining
a count αs(a) for each action a ∈ A. The initial values
of αs(a) = α0

s(a) are the hyperprior, initialised to any
value. In this application, the hyperprior is used if the
advisor is unsure whether or not it has received a sampling
of trajectories which accurately approximate the underlying
task distribution in the domain. Setting this hyperprior to a
larger value will then prevent the action priors from over-
generalising from incomplete data, and provide the agent
with a possibility of finding a goal, even if that goal has
not been witnessed before by the advisor.

The αs are learnt by the advisor from previous behaviours
[2], and updated for each (s, a) for a new policy π̂:

αnews (a) ←−

{
αs(a) + 1 if π̂(s, a) > δθ

αs(a) otherwise,
(1)

where 0 ≤ δθ ≤ 1 is a threshold. αs(a) reflects the number
of times a was considered a good choice of action (as
determined by δθ) in state s by any policy, added to the
hyperprior priors α0

s(a). Although δθ is domain dependent,
in our application it is sufficient to set δθ = 0 if the policies
are near-optimal.

The closed form of (1) is thus the number of known
policies in which a is taken in s with probability greater
than δθ:

αs(a) = ‖{π ∈ Π|π(s, a) > δθ}‖+ α0
s(a). (2)

Fig. 2. An illustration of using the action priors for advice in a 3×3 region
of a larger domain. (a) Assume three expert trajectories (shown in blue) have
passed through this region. (b) When providing advice to an agent situated
in the centre cell, the suggested probabilities (shown in each cell) of taking
each direction are computed from the behaviour of the previous trajectories.

To obtain the action priors θs(a), sample from the Dirich-
let distribution: θs(a) ∼ Dir(αs). As θs(a) is a probability
distribution over A:

∑
a θs(a) = 1, ∀s ∈ S.

In (1) the α counts are incremented by 1, rather than the
probability π̂(s, a). This is because counts of the actions
used by the different policies are accumulated, rather than
simply averaging the individual policies. A simple average
could result in the agent being drawn towards a local
optimum in state space, by one policy dominating others,
and subsequently being unable to escape from it. Instead
each action is weighted by the number of tasks which require
the selection of that particular action, which is then used as
the prior of that action choice in that state over all tasks
in the domain. Our key assumption is thus that common
sense is modelled as prioritising actions lower if they are
less commonly used.

IV. ADVICE GIVING USING ACTION PRIORS

To provide advice, we do not need to assume that the
advisor has the same action set as the explorer. Instead,
the advisor can provide advice over the outcomes of the
actions [3]. In this way, we require that all agents must have
state and action sets mappable to a common set used by the
advisor. The implication of this is that the state and action
representations used by each agent can differ, but effects of
these actions should be common to all agents. For instance,
each agent may have a different mechanism for moving, but
they should all have actions with outcomes of movement
in the same directions. In what follows, we assume the
action sets are the same for all agents. The advisor also
needs to be able to observe the outcomes of the actions
taken by every agent. Learning the model of typical domain
behaviours is not possible using observations of state alone
as, for example, the advisor would be unable to distinguish
between an agent repeatedly running into a wall, or standing
still. An illustration of providing advice based on the action
priors which are computed from previous trajectories through
the space is shown in Figure 2.

The advisor’s goal is to estimate how much help the
agent needs by comparing behaviour to the action prior,
representing common sense behaviour, and then based on
this, to provide advice to the agent in critical locations.

A. What Advice to Give

When advice is given to the explorer, we assume it is
given as the action prior at the state it currently occupies. In
this way, we follow a model of providing action advice [4]
as a method of instruction which does not place restrictive
assumptions on the differences between the advisor and the
explorer. The advice is thus a probability distribution over
the action space, as obtained from the prior. If the agent is
currently in state s, the advisor provides the advice θs(A).

The proposed protocol for using the offered advice is
that the explorer should select the next action according to
this advised distribution. This protocol for the advice to be
provided as a distribution rather than recommending a single
action allows the explorer to incorporate its own beliefs about
the next action it should choose. In this way, the explorer
may thus alternatively use this provided action distribution
to update its own beliefs from which to select an action.

Note that if the explorer uses the proposed protocol of
sampling an action from the offered advice, then the advisor
could equivalently have sampled from θs(A) and offered a
single action. The choice of protocol here would depend on
the mechanism used to convey the advice to the agent.

As described in Section III, the action priors describe
a model of behaviours in this domain, marginalised over
multiple tasks. As such, by providing a distribution of actions
in accordance with this model, we inform the instantaneous
motion of the agent such that it matches this common
behaviour. This information will guide the agent towards
regions of the domain in proportion to their importance for
reaching the set of known domain goal locations.

B. When to Give Advice

There are a number of reasons not to provide advice to
the explorer at every time step. Costs may be incurred by
the advisor in terms of the resources required to display the
advice to the explorer. In the hospital example, these could
be ground lighting pointing the way, electronic signage, or
dispatching a robot to the location of the agent. Additionally,
interpreting this advice may cost the explorer time, and
anecdotal evidence suggests that humans are easily annoyed
by an artificial agent continually providing advice where it
is not wanted.

Consequently, the advisor should provide advice only as
it is needed. It thus computes an estimate of the amount of
advice required, from the probability of the agent’s trajectory
under the action prior at time t. This probability is a measure
of the agent’s similarity to population behavioural normalcy.
Because the action prior models normalcy in the domain,
deviation from this corresponds to fault detection in the
absence of task-specific knowledge.

Ideally advice should only be given if its benefit outweighs
the cost incurred by giving advice. We assume a constant
penalty of advising, κ. This could, e.g., be the average cost
of dispatching a robot, or an estimate of user annoyance or
likelihood of ignoring the advice. The benefit of advising
at state s is the utility gain ∆U(s) from using the advice,
rather than taking another action. Because we do not know

the actual values of any states, having learnt from expert
trajectories only with no access to reward functions, we
approximate this utility gain as a function of the difference
between the probabilities of action selection under the action
prior, and the expected action of the agent. This gives

∆U(s) ' KL
[
θs(A), P (A|s,H)

]
, (3)

where KL[·, ·] is the KL-divergence. P (A|s,H) is the ex-
pected action selection probabilities of the explorer in state
s, having followed the state-action history H , computed by

P (A|s,H) =

∫
M

P (A|s,M)P (M |H)dM, (4)

with P (A|s,M) being the action selection probabilities in
state s under a model M . P (M |H) is the probability that
the agent is selecting actions according to M , given the state-
action history H , and is computed according to

P (M |H) =
P (H|M)P (M)∫

M
P (H|M)P (M)dM

. (5)

Combining these forms a decision rule for giving advice.
The explorer is advised if the following condition holds:

KL

[
θs(A),

∫
M

P (A|s,M)P (M |H)dM

]
≥ κ. (6)

Condition (6) requires a set of different behavioural mod-
els. The action priors provide a model of normal behaviour,
but other models must be defined which describe different
classes of behaviour. Herein we assume two models M :

1) M1: Normalcy, modelled by action priors, empirically
estimates the probability of selecting actions from the
behaviour of expert agents performing various tasks.

2) M2: Uniformity, which models the explorer not know-
ing what it is doing or where it is going, involves
selecting actions with uniform probability.

Without further information, we assume that these two
models have equal prior probability, and so P (M1) =
P (M2) = 0.5. Also note that P (A|s,M1) = θs(A). We
choose to model a lost agent through M2 as one that does
not know what to do at all at the level of single actions.
This could equally well be modified to work at the level
of macro-actions for temporally extended behaviours, taking
into account the fact that action distributions at adjacent
states may not be independent.

C. Complete Procedure

The full procedure consists of an offline training phase,
and an online advising phase. These two phases may run
concurrently, but whereas the online phase may last for only
a single task, the training phase happens over a considerably
longer duration, consisting of numerous agent interactions
with the domain. The full system is shown in Figure 3.
• Offline: train the advisor by collecting trajectories from

many different agents carrying out various tasks in the
same domain. From these, the advisor learns the action
priors as a model of typical behaviour (Section III).

Fig. 3. The proposed system. The explorer interacts with the environment
by executing an action a, and receiving a new state s and possibly a reward
r. The advisor observes the agent, by receiving a copy of s and a. It
evaluates the trajectory taken by the explorer, by comparing to the action
prior θ obtained from a database of previous behaviours. If advice must be
given, it is provided to the explorer in the form of the distribution θs(A).

Fig. 4. The maze used in these experiments. White cells denote free space,
black cells are obstacles, goal locations are the eight cells marked in red.

• Online: a new agent, the explorer, begins execution of
some unknown task. The advisor continually evaluates
the trajectory of the explorer, and if condition (6) is
satisfied, the advisor provides advice to the explorer in
the form of the action prior for the current state.

V. EXPERIMENTS

A. Maze Domain

For our experiments we use a maze domain, being the
30×30 cell grid world shown in Figure 4, through which an
agent navigates by moving at each time step in one of four
cardinal directions. There are eight goals, selected randomly
from corners and ends of corridors. Each agent starts at the
lower left corner and must reach a randomly chosen goal.
This is a delayed reward problem, with the agent receiving
a reward of 1000 for reaching its goal, and 0 otherwise.

B. Agents

The offline training data which is provided to the advisor
is a set of expert trajectories from agents moving towards
each of the eight goals. From these the action prior model
M1 is learnt, to model “normal” behaviour in the domain.

Online experiments involve different types of explorers
entering the maze, each with a randomly selected goal
location. As a baseline, we consider the performance of
an agent following an optimal trajectory. We do not know,
a priori, how people behave and do not want to assume
that people can easily zero in on a goal and execute an
optimal policy. We thus experiment with various behaviour

Agent Without Advice With Advice
Random motion 50 900
Random with obstacle avoidance 50 750
Always turn left 150 750
Goal seeking bug 100 800
Q-learning 150 1000
Optimal trajectories 1000 1000

TABLE I
PERFORMANCE OF VARIOUS AGENTS ON THE MAZE DOMAIN

patterns to clarify how the algorithm behaves, although not
all accurately model how humans and animals search. We
consider the effects of advice on the following user models:
• Completely random: at every time step pick a cardinal

direction at random and attempt to move in that direc-
tion.

• Random with obstacle avoidance: select actions at ran-
dom, from those which will not result in a collision.

• Always turn left: use the common heuristic for nav-
igating mazes: always take the leftmost path at an
intersection.

• Goal seeking bug: heuristically move in the direction
which will most reduce the difference in x- and y-
coordinates between the agent and its goal.

• Q-learning: this non-stationary agent learns using ε-
greedy Q-learning [5].

What is common to all of the fixed-policy agents is that when
offered advice, they will all select an action according to the
offered distribution. The Q-learning agent uses the advice as
an exploration policy with probability ε [2].

Each fixed-policy agent performs 20 random one-shot
tasks of up to 5,000 steps, with and without advice. Note
that each agent has only one episode to complete each task.
The learning agents learn for 5,000 episodes, where each
episode is limited to only 200 steps, making this a difficult
learning task.

C. Results

The results for the various agents with and without advice
are shown in Table I. Performance curves and probabilities
that the agent is acting according to M1 are shown in Figure
5 for the fixed-policy agents, and reward curves in Figure 6
for the learning agents. The probabilities in condition (6) are
over a moving window of the most recent 300 time steps of
the transition history H of the explorer, to avoid underflow.

Figure 5 shows the performance improvement when advice
is given to the different types of agents, over performance
without advice. Although the agents all follow different ac-
tion selection procedures, injection of advice results in them
resembling normal behaviour in the domain more closely,
and subsequently improving performance significantly.

In Figure 6, note the similar improvement in the perfor-
mance of Q-learning by guiding the learning agent towards
sensible goal locations. The difficulty with a domain such as
that in Figure 4, as seen by the fact that the non-advised
agent is far from converged after 5000 episodes, is that

Fig. 5. P (M1|H) and rewards of different fixed-policy agents, averaged
over 20 random tasks with κ = 0.5 Solid lines show non-advised perfor-
mance, and dotted lines are advised. Results are smoothed for readability.

Fig. 6. Performance from advice giving with a learning agent, averaged
over 20 tasks with κ = 0.5

a specific sequence of correct actions is required, and the
standard learning agent does not receive information to guide
its progress. Using advice, the learning agent can discover the
correct goal location within a handful of episodes, something
which is not possible otherwise.

Figure 7 shows the amount of advice given to the agents
as κ in condition (6) is varied. κ is the cost of giving advice,
to both the explorer and the advisor. As κ is increased, the
quantity of advice provided decreases. Although not included
here, we note that the Q-learning agent behaves initially as
the random agent, and after convergence behaves as optimal.

VI. RELATED WORK

A similar problem to our own is that of a learning
agent teaching another to perform a particular task [4]. Our
problem differs, as our domain supports a number of different
tasks, and so the advisor does not know the explorer’s goal.
Advice is more useful in our case as a distribution over action
possibilities. Further, our problem does not explicitly restrict

Fig. 7. Amount of advice given to different agents per 100 steps as a
function of κ. κ = 0 implies that advice is always given. 10 trajectories of
1000 time steps were generated for each agent at each value of κ.

the amount of advice to a constant, which seems unnatural,
but instead computes the utility trade-off from giving advice.

An alternative approach to learning this common sense
model would be learning latent variable models to infer
the current activities. One method is to learn the typical
behaviours of individual agents (e.g. [6]), but our application
assumes many unique users who are not active in the system
for long enough to be modelled. Instead one could also
learn models of all the different tasks in the domain, using
e.g. hidden-goal MDPs. Again, we include the possibility
in our problem of there being a large number of goals,
and furthermore providing advice from hidden-goal MDPs
is PSPACE-complete [7].

Having one agent advise another is a form of transfer
learning [8], in that it is a mechanism for simplifying and
speeding up the learning of a new task by using the expertise
of one agent to bootstrap another. There are many other
approaches to transferring knowledge in this way, with two
common restrictions: 1) the advisor and learner agree on the
task and goal, and 2) the amount of teaching/advice is unlim-
ited. Common inter-agent teaching methods include imitation
learning, or learning from demonstration [9], [10], and in
particular to the reinforcement learning case, apprenticeship
learning [11], [12], [13]. Finally, a teacher may also instruct a
learner in a more passive manner by deconstructing the main
task into a sequence of simpler tasks of increasing difficulty.
This approach is typically referred to as reward shaping or
curriculum learning [14], [15], [16], [17].

VII. CONCLUSION

This paper examines how to teach an agent through giving
it advice while it performs unknown tasks in a known
domain. This is an important issue in the current trends of
collaborative and social robotics, where a human in some
building could perform more efficiently when advised by
a robotic agent installed building-wide. Having examined
different agents performing different tasks in this common
domain, we build a model of expected behaviour in the
domain. New agents can then be compared to this model,
to estimate how much teaching is required. To do so, we

derive a condition which approximates the trade-off in utility
gained from following the advice rather than continuing with
its current course of action, against the utility lost as a result
of providing the advice. If advice is required, the agent
is provided with the distribution over actions suggested by
the domain model at that state. This is shown to boost the
performance of different fixed-policy and learning agents on
random tasks.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the suggestions of the three
reviewers. This work has taken place in the Robust Autonomy
and Decisions group within the School of Informatics, University
of Edinburgh. Research of the RAD Group is supported by the
UK Engineering and Physical Sciences Research Council (grant
number EP/H012338/1) and the European Commission (TOMSY
Grant Agreement 270436, under FP7-ICT-2009.2.1 Call 6, and
SmartSociety Grant Agreement 600854, under a FET Proactive
Call).

REFERENCES

[1] O. Flemisch, A. Adams, S. R. Conway, K. H. Goodrich, M. T. Palmer,
and P. C. Schutte, “The H-Metaphor as a Guideline for Vehicle
Automation and Interaction,” NASA, Tech. Rep. NASA/TM2003-
212672, 2003.

[2] B. S. Rosman and S. Ramamoorthy, “What good are actions? Acceler-
ating learning using learned action priors,” International Conference
on Development and Learning and Epigenetic Robotics, November
2012.

[3] A. A. Sherstov and P. Stone, “Improving Action Selection in MDP’s
via Knowledge Transfer,” AAAI, pp. 1024–1029, 2005.

[4] L. Torrey and M. E. Taylor, “Teaching on a Budget: Agents Advising
Agents in Reinforcement Learning,” International Conference on
Autonomous Agents and Multiagent Systems, May 2013.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. The MIT Press, 1998.

[6] L. Liao, D. J. Patterson, D. Fox, and H. Kautz, “Learning and Inferring
Transportation Routines,” Artificial Intelligence, vol. 171, pp. 311–331,
2007.

[7] A. Fern and P. Tadepalli, “A Computational Decision Theory for
Interactive Assistants,” Advances in Neural Information Processing
Systems, 2010.

[8] M. E. Taylor and P. Stone, “Transfer Learning for Reinforcement
Learning Domains: A Survey,” Journal of Machine Learning Research,
vol. 10, pp. 1633–1685, 2009.

[9] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469–483, May 2009.

[10] A. N. Meltzoff, P. K. Kuhl, J. Movellan, and T. J. Sejnowski,
“Foundations for a New Science of Learning,” Science, vol. 325, no.
5938, pp. 284–288, July 2009.

[11] P. Abbeel and A. Y. Ng, “Apprenticeship Learning via Inverse Rein-
forcement Learning,” International Conference on Machine Learning,
2004.

[12] U. Syed and R. E. Schapire, “A Game-Theoretic Approach to Ap-
prenticeship Learning,” Advances in Neural Information Processing
Systems, 2008.

[13] B. S. Rosman and S. Ramamoorthy, “A Game-Theoretic Procedure
for Learning Hierarchically Structured Strategies,” IEEE International
Conference on Robotics and Automation, 2010.

[14] G. D. Konidaris and A. G. Barto, “Autonomous shaping: Knowledge
transfer in reinforcement learning,” Proceedings of the 23rd Interna-
tional Conference on Machine Learning, pp. 489–496, 2006.

[15] T. Erez and W. D. Smart, “What does Shaping Mean for Computational
Reinforcement Learning?” International Conference on Development
and Learning, pp. 215–219, 2008.

[16] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
Learning,” International Conference on Machine Learning, 2009.

[17] W. B. Knox and P. Stone, “Interactively Shaping Agents via Human
Reinforcement: The TAMER Framework,” International Conference
on Knowledge Capture, September 2009.

