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Abstract—Many robotic applications feature a mixture of
interacting teleoperated and autonomous robots. In several such
domains, human operators must make decisions using very lim-
ited perceptual information, e.g. by viewing only the noisy camera
feed of their robot. There are many interaction scenarios where
such restricted visibility impacts teleoperation performance, and
where the role of autonomous robots needs to be reinforced.
In this paper, we report on an experimental study assessing
the effects of limited perception on human decision making, in
interactions between autonomous and teleoperated NAO robots,
where subjects do not have prior knowledge of how other agents
will respond to their decisions. We evaluate the performance
of several subjects under varying perceptual constraints in two
scenarios; a simple cooperative task requiring collaboration with
an autonomous robot, and a more demanding adversarial task,
where an autonomous robot is actively trying to outperform the
human. Our results indicate that limited perception has minimal
impact on user performance when the task is simple. By contrast,
when the other agent becomes more strategic, restricted visibility
has an adverse effect on most subjects, with the performance level
even falling below that achieved by an autonomous robot with
identical restrictions. Our results could inform decisions about
the division of control between humans and robots in mixed-
initiative systems, and in determining when autonomous robots
should intervene to assist operators.

Index Terms—Interactive teleoperation; limited perception.

I. INTRODUCTION

Most existing robotic systems that are deployed in field

applications (e.g. rescue robot teams, de-mining, unmanned

aerial vehicles) depend on teleoperation. Many such domains

of interest are of a mixed nature, i.e. feature both fully au-

tonomous robots and robots teleoperated by humans (or phys-

ically present humans). Interaction and coordination between

such heterogeneous agents is a challenging task, largely due

to their varied actions, perception, and cognitive capabilities.

When looking at how humans (tele)operate in mixed do-

mains, it is important to assess how these heterogeneous

capabilities affect their ability to make robust decisions, in the

presence of other, possibly adversarial, interacting agents. Hu-

mans are generally believed to have a superior grasp of context

and situational awareness than autonomous robots. This is one

reason why most deployed systems still depend quite heavily

on the human user to control robots. However, this awareness

also depends on the perceptual information made available

to operators, which influences how they perceive their own

robot’s surroundings and the state of other interacting robots.

In many realistic situations, this information may be sparse

or incomplete; for example, an operator controlling a rescue

robot in a disaster site may only have access to the robot’s

noisy camera feed. Thus, a subject having full visibility of the

environment may be able to fully understand how other agents

are behaving, and plan the actions of the teleoperated robot ac-

cordingly. By contrast, if the same person has limited visibility

of the environment, the decisions may be less informed and

thus less effective. In the latter case, where users are effectively

constrained to have the same perceptual capabilities as a robot,

it is unclear whether their decisions would be able to exceed,

or even match, the performance level of an autonomous agent.

This is an important issue to be addressed in systems where the

autonomous system can intervene to assist the human partner.

In this paper, we consider the problem of human-robot

interaction in perceptually constrained mixed robotic domains,

and present empirical data addressing the following questions:

• What is the effect of incompleteness and asymmetry

of information on human teleoperation performance in

interactive robotic tasks?

• Where should the boundary between human control and

autonomy lie, and what is the correlation between the

effects of perceptual limitations and the strategic content

of interactive tasks?

We view these issues as central not only to understanding

the factors that influence interactive decisions, but also to de-

signing mixed robotic systems that can successfully combine

the relative merits of human control and autonomy.

In order to address the above questions, we evaluate the per-

formance of several subjects in two different interactive tasks

involving a teleoperated and an identical autonomous NAO

humanoid robot. Both tasks share the following properties:

• The human subjects do not know a priori how the

autonomous robot will behave, nor can they exchange any

data with it during the task. Thus, they can only infer its

decisions through observation and repeated interaction.

• The tasks are fully interactive, requiring subjects to make

several decisions over a short time horizon and also to

respond to the actions of the autonomous robot.

The first task is a cooperative target allocation task, where

the two robots must reach two different targets without in-

terfering with each other. The second is an adversarial task,



where the two robots compete in a soccer penalty shoot-out

(autonomous striker vs. teleoperated goalkeeper). This task is

considerably harder for two interrelated reasons:

• The autonomous robot is a strategic adversary who seeks

to outperform the human through deceptive manoeuvres.

• The human subject must estimate and infer finer-grained

information, e.g. the absolute states of the robots and the

most likely kicking direction selected by the striker.

In both cases, we first evaluate subjects under full observability

of the interaction environment, and we subsequently constrain

them to viewing only a live feed from the robot’s camera.

Main hypothesis: In light of the above constraints, our

core hypothesis is that only a small proportion of subjects

should perform worse in the cooperative task under restricted

perception, whereas a greater fraction would be impacted in

the adversarial task under these conditions. In other words, we

hypothesise that the combined challenge of reasoning about

absolute states and the strategic behaviour of the adversary

will have an adverse effect on human performance under lim-

ited visibility in the second task, unlike the simpler interaction

and inference requirements posed by the first task.

In the remainder of this paper, we first review related work

from the robotics literature (Section II). We then describe the

experimental setup and the interactive tasks (Sections III-IV).

In Section V, we present empirical results of our evaluation on

several subjects. Our results suggest that restricted visibility is

more likely to impact subjects in strategic interactions, where

there is greater uncertainty over the autonomous robot. We

review our key contributions in Section VI.

II. RELATED WORK

Human-robot interaction is often evaluated in the context of

cooperative tasks, where the interacting parties must collabo-

rate to achieve a common goal (e.g., cooperative object ma-

nipulation [8][10]). Many such interactions are centred around

the ability of the robot to receive and follow instructions from

a human, in order to fulfil its role in the task (e.g., [13][18]).

Furthermore, several collaboration studies are concerned with

modeling human intentions; various approaches have been

proposed to this effect, such as velocity-based impedance

control [9], dynamic Bayesian networks [17], or interaction

history records [8]. In our work, we look at the related problem

of how humans account for the intent of autonomous robots in

dynamic interactions. Moreover, in our experiments, subjects

must infer the robot’s intent only through observation which is

progressively restricted. Thus, our tasks present different chal-

lenges than corresponding problems in the existing literature.

The influence of perception in human-robot cooperation

has been previously examined in the context of recognising

actions and learning skills from observation (e.g. [11], [12]).

Learning from demonstration under perceptual constraints was

studied in [7], where it was shown that robots can learn more

effectively when the perception of human demonstrators is

restricted to be similar to their own. An interesting result in

that study was that robots were able to learn more quickly

from restricted-perception demonstrations, even though their

quality was often inferior to full-perception ones. A sim-

ilar study on human teleoperation was conducted in [14],

where user performance was found to be correlated to the

availability of perceptual information. In this paper, we are

similarly interested in assessing the effects of constrained

visibility on human performance. However, our focus is not

on learning from demonstrations provided independently by

humans, but instead on evaluating human performance in a

purely interactive environment, where the human and the robot

simultaneously engage in cooperative and adversarial tasks.

Fatigue and stress have also been considered as influencing

factors during teleoperation. In one recent study [15], subjects

were evaluated in a remote grasping task, in consecutive trials

totalling up to ten minutes. This study found no clear evidence

of performance degradation due to fatigue. In our work, where

experiments have a similar duration, we similarly do not find

any clear evidence for fatigue-induced effects on performance.

A mixed robotic domain that resembles our setup is Segway

soccer [5][6], which involves mixed teams of humans and

robots mounted on Segways. Our work shares a similar

motivation in that humans and robots engage in a common

task using similar physical capabilities. However, we also

note some important differences. First, the pace of the inter-

action in our experiments is faster than Segway soccer (as

demonstrated in the supporting video in Section V), requiring

more frequent decisions. Second, being one-to-one interactions

between teleoperated and autonomous robots, our tasks offer

a more direct comparison of human-robot decision-making

than Segway soccer, where role allocation is less clear. Thus,

although our domain features fewer robots, it ensures that

humans and robots get equal interaction time; by contrast, in

a mixed-team game, humans could potentially supplant the

role of the robots. Third, Segway soccer captures only the

full visibility case of our tasks, as humans perceive the world

through their own eyes. Here, we seek to further constrain the

interaction by restricting the perception of the subjects.

III. EXPERIMENTAL SETUP

A. Humanoid robot

We use the NAO robot, shown in Figure 1(a), a 58cm-

tall humanoid with 21 degrees of freedom [2]. The NAO is

the official robot of the RoboCup Standard Platform League

(SPL) [1], in which our team, Edinferno [4], is a participating

member, having reached the quarterfinals in 2012. Each robot

has two cameras capturing images at approximately 30fps. The

robot has a limited field of view, but it can move its head in

order to track a different area in its environment. Our software

is based on the B-Human code release [16], which provides

modules for fast walking, vision, and self-localisation.

B. Interaction environment

The robots interact in an open arena (Figure 1(b)) modeled

on the official SPL field [3], with dimensions of 4.5x3.0m.

In the penalty shooting task, robots use field goals and

lines as landmarks, in order to compute their position in the

field, and thus determine the relative distance and direction of



(a) (b) (c)

Fig. 2. Experimental setup - cooperative task. (a): An autonomous (top left) and a teleoperated (top right, in front of human operator) robot must reach two
different targets (indicated by the flagpoles) without interfering with each other. The autonomous robot randomly selects a target to navigate to, which the
subject must infer during the interaction, in order to lead his robot to the other target. The initial positions of the robots are fixed but the locations of the
targets change between trials. (b): Same task, but the subject now has access only to the robot’s noisy camera feed (shown in (c)).

(a) (b)

(c) (d)

Fig. 1. Experimental setup. (a): The NAO humanoid robot. (b): The arena
where the two robots interact. (c): The controller used to command the robot.
(d): Remote control of a robot by a subject.

the goal. The goals are 1.40m wide and are painted yellow,

whereas lines and field markings are white and placed at spec-

ified positions [3]. For the cooperative task, self-localisation

is not required, so the field is simply used as an open arena.

C. Teleoperation

Subjects control the robot using an Xbox controller (Figures

1(c)-1(d)). The inputs are converted to action commands (e.g.

forward walk) and transmitted wirelessly to the robot.

IV. INTERACTION SCENARIOS

A. Cooperative task – Target allocation

In the cooperative target allocation task, the two robots

are placed in the arena as shown in Figure 2(a). The task

requires the robots to reach two different targets in an arena.

The initial positions of the robots are fixed as in Figure 2(a),

but the targets are moved around the arena between trials.

The autonomous robot initially selects a target at random, and

begins moving towards it. The human subject must then infer

where the autonomous robot is heading, and steer his own

robot to the other target as fast as possible. Subjects must also

avoid collisions or interference with the autonomous robot.

The autonomous robot has no external information (e.g.

positions from an overhead camera) and perceives the world

only through its own perspective camera. There is also no

communication between the robots, so there is no prior (or

interactive) agreement on the allocation of the targets.

1) Autonomous robot behaviour: The autonomous robot

navigates to its chosen target using a simple visual servoing

routine. The targets are colour-coded so that they can be easily

identified. The random selection of a target is enforced by

having the robot initially look away from the arena (so that

no targets are visible), and then randomly select whether it

should start turning left or right. The robot then keeps turning

until it locates a target, and then starts moving towards it.

2) Full vs. restricted perception: We consider the coopera-

tive navigation task in two situations. In the first case (Figure

2(a)), the subject may view the entire arena, thus having

full visibility of the environment. In the second case (Figure

2(b)), the subject is restricted to viewing only the teleoperated

robot’s noisy camera feed (Figure 2(c)) on a computer screen.

Thus, the subject is constrained to have the same perceptual

capabilities as the autonomous robot, so the two robots differ

only at the behavioural level (autonomous vs teleoperated).

In the full visibility case, subjects have a clear view of both

robots and both targets. Thus, it is relatively straightforward

to identify where the autonomous robot is heading, and,

assuming adequate familiarity with the joystick controller, lead

the teleoperated robot to the appropriate destination. However,

when perceptual information is restricted, recognising the

autonomous robot’s behaviour and steering the teleoperated

robot becomes more challenging.



3) Teleoperation commands: The subject may control

the translational (forward-backward-side steps) and rotational

(turn left-right) motion of the robot. In restricted visibility,

there are additional inputs to control the robot’s head move-

ment and scan different parts of the world through its camera.

B. Adversarial task – Penalty shooting

(a) (b)

Fig. 3. Experimental setup - adversarial soccer penalty shooting task.
(a): Initial poses of the autonomous striker (near side, blue waistband)
and the teleoperated goalkeeper (far side, pink waistband). (b): Restricted
perceptual information. Left: Visualisation of the robots’ self-localisation
estimate (shown by the red markings on the field drawing). Right: Perspective
view of the goalkeeper, looking at the ball and the approaching striker.

The adversarial task is a penalty game between an au-

tonomous striker and a teleoperated goalkeeper. The initial

positions of the robots are shown in Figure 3(a). The game

loosely follows the rules of SPL penalty shooting [3]. The

striker has one minute to score a goal and is allowed one kick

per trial, so ball dribbling is not permitted. The goalkeeper

may not leave or touch the ball outside the penalty box; such

violations result to a goal awarded to the striker. The striker

has access to a single, straight kick; thus, to shoot towards the

goal edges, it must adjust its orientation accordingly.

The objective for the human is to guess which way the

autonomous striker is going to shoot, and move the goalkeeper

to a suitable shot-blocking position. This is considerably

harder than cooperative navigation, as the autonomous robot

now attempts to outperform the human, by strategically trying

to score a goal. Thus, the human must also continuously reason

about the absolute positions of the robots in the field.

1) Autonomous robot behaviour: In contrast to the coop-

erative task, where only relative distances to the targets are

required, the autonomous robot now determines its absolute

position in the field. As no external information is provided,

the robot processes the images retrieved from its camera to

identify the relative positions of various landmarks, such as

goal posts and field lines. This information is passed to a self-

localisation module, which computes the robot’s absolute pose

(position and orientation) through a particle filter.

The behaviour of the striker was programmed from human

demonstration examples. We recorded the control inputs of

several subjects controlling a teleoperated striker against an

autonomous goalkeeper (the dual of the problem we are

considering here). The autonomous goalkeeper followed a

simple heuristic algorithm, where the blocking position on the

goal line is chosen based on the observed orientation of the

striker. Demonstrations were labeled as being either successful

(a goal was scored) or unsuccessful (miss). The autonomous

striker was programmed to use a probabilistic mixture of the

successful demonstrations against the teleoperated goalkeeper.

2) Full vs. restricted perception: Under restricted visibility,

subjects are now provided with both the robot’s live camera

feed and a visualisation of the two robots’ self-localisation

estimates (Figure 3(b)). In the full visibility case, uncertainty

in localisation presents the autonomous robot with an even

greater perceptual handicap than in the cooperative task, as

noisy or incorrect positional information is likely to lead the

striker to misinformed decisions on its adversary. For humans,

restricted visibility introduces the challenge of inferring the

absolute positions of the robots, using only noisy sensory data.

3) Teleoperation commands: As in the previous task, sub-

jects may control the translational and rotational motion of

the goalkeeper. There are also inputs for spreading the robot’s

legs to block the ball. The goalkeeper is programmed to track

the ball and the approaching striker automatically (as in Figure

3(b)), removing the need to control the robot’s head separately.

V. RESULTS

We evaluated the two tasks on 40 different subjects; 20 of

these subjects were tested just on the adversarial task, 10 just

on the cooperative task, and 10 participants on both tasks.

The experimental sample was varied, consisting of both male

and female subjects, young children and adults, users with

previous robotics experience and users who were interacting

with robots for the first time. Snapshots from recorded trials

are given in Figures 4 and 5. Further examples are available

in the supporting video of this paper (available online: http:

//www.youtube.com/watch?v=6xi7WPgg46A).

Fig. 6. The five target configurations, cooperative task. Blue circle: Teleop-
erated robot initial position. Red square: Autonomous robot initial position.
Green triangles: Target positions.

For the target allocation task, each subject was evaluated on

5 different target configurations, which are shown in Figure

6. Targets were progressively moved closer to increase the

difficulty of the task. Subjects were initially tested on each

configuration under full visibility, and then they were asked

to repeat this procedure viewing only the robot’s camera

feed. In each trial, we recorded the targets selected by the

robots, the time taken by the teleoperated robot to reach the

selected target, whether or not there was a collision with the

autonomous robot, and the subject’s joystick inputs. As target

positions were known in each trial, we divided the distance to

the selected target with the total time taken by the subject, to

obtain the average speed as a normalised performance metric.

For penalty shooting, subjects controlled the goalkeeper for

5 trials under full visibility, and then for a further 5 trials



Fig. 4. Cooperative task. Navigation targets are now represented as orange balls. Top: A subject controlling the robot (blue waistband, starting at the right)
under full visibility. Middle: A trial as seen through the teleoperated robot’s camera. Bottom: The same subject controlling the robot under restricted visibility.

Fig. 5. Adversarial task. Top: Full visibility - a teleoperated goalkeeper (operator not shown) saves a shot. Middle: A trial as seen through the robot’s camera.
The last snapshot shows the view of the goalkeeper after an unsuccessful dive to save the ball. Bottom: Limited visibility - different subject conceding a goal.

under limited visibility. We recorded the outcome of each trial

(goal/no goal), the control inputs of the subject, and the self-

localisation estimates of the two robots during the trial.

A. Overall performance

1) Performance metrics: Results for the overall metrics

(average speed for target allocation, goals conceded for penalty

shooting) are shown in Figure 7. For target allocation, there

was little difference between visibility conditions, in both

successful execution rate (collisions with autonomous robot)

and performance rate (average speed). An interesting pattern

is observed in the subject-specific illustration of the results

(Figure 7(c) - left), where there is a roughly equal number of

subjects with improved and deteriorated performance between

the two visibility cases. This suggests that reduced visibility

is not an impeding factor in this simple interactive setting.

By contrast, most subjects appeared to struggle more under

restricted visibility in the adversarial task. About two thirds

of the subjects saved fewer goals when this restriction was

applied, while only 4 out of 30 managed to save more (Figure

7(c)-right). For this task, we also recorded the distance of the

goalkeeper from the optimal blocking position at the time of

the shot (Figure 8(a)). Through this metric, we model how well

subjects were able to respond to the moves of the autonomous

striker, and lead goalkeepers to a position that maximises the

chances of a save. As shown in Figure 8(b), the recorded

distance for almost half of the subjects increased considerably

under restricted visibility.

2) Performance rate: Table 7(d) shows a time-indexed

representation of the overall results for the different presented

experiments. Due to the small number of trials and the short

duration of each trial (at most 1 minute in both tasks), subjects



Visibility Full Restricted

Mean average speed over all sub-

jects (mm/s)

86.57 76.70

Minimum average speed 38.83 32.31

Maximum average speed 128.22 93.62

Standard deviation of avg. speed 20.05 13.66

Number of collisions with au-

tonomous robot (out of 100 trials)

4 2

(a) Overall performance metrics – cooperative task.

Visibility Full Restricted

Total number of goals conceded 71/150 90/150

Mean goals conceded per subject 2.36/5 3/5

Standard deviation 0.81 1.14

Mean goal difference between visib. cases 0.663

Standard deviation 0.994
(b) Overall performance metrics – adversarial task.
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(c) Performance metrics per subject - average speed in target allocation
(left), goals conceded in penalty game (right). In each graph, values are
sorted by the difference of the performance of the subject between full and
restricted visibility. Values towards the left represent subjects most affected
by restricted visibility, as indicated by the performance degradation.

Trial 1 2 3 4 5

Avg. speed (full v.) 69.5 94.3 82.4 89.1 97.4

Avg. speed (restr. v.) 67.6 76.1 77.9 78.1 83.8

Goals conc. (full v.) 0.27 0.67 0.40 0.53 0.50

Goals conc. (restr. v.) 0.60 0.80 0.40 0.50 0.70
(d) Time-indexed representation of overall results – mean values per trial.

Fig. 7. Overall performance metrics – both tasks.
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(b)

Fig. 8. Alternative performance metric for adversarial task: distance from
optimal blocking position. (a): Explanation of metric. Poses of striker and
goalkeeper at time of kick - optimal position for goalkeeper is the intersection
of the line formed by the striker’s orientation, and the goalkeeper’s line of
motion. (b): Results per subject, sorted by difference between visibility cases.

appear not to be affected by factors such as fatigue or stress,

which could cause a visible performance degradation in longer

experiments. In the restricted visibility instance of target
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(c) Adversarial - full
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(d) Adversarial - restricted

Fig. 9. Heat maps of recorded user inputs, all trials. Colour indicates the
percentage of trials in which a particular control input/time pair was recorded.
Top row: Cooperative task - forward motion (positive direction: front). Bottom
row: Adversarial task - side motion (positive direction: left).
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(a) Full visibility.
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(b) Restricted visibility.

Fig. 10. Heat maps of recorded striker and goalkeeper trajectories, all
trials. Colour indicates the percentage of trials in which a particular point
was recorded. Left subplots: heat maps for forward (x) - side (y) motion
trajectory components - left blob corresponds to autonomous striker, right
blob to teleoperated goalkeeper trajectories. Right subplots: heat maps for
forward (x) - rotational (θ) motion components for the striker.

allocation, subjects are seen to improve their performance over

time, without however reaching the average speeds attained

in the full visibility case. By contrast, there is no conclusive

evidence of time-induced learning in the other experiments,

with the mean performance fluctuating across different trials.

B. User control inputs and trajectories

In addition to evaluating overall performance, we compared

the variation of user control inputs under the different experi-

mental conditions. Figure 9 provides a heat map representation

of all recorded inputs for the two most frequently used axes

of motion in the two tasks – the forward motion in target al-

location and the goalkeeper’s side motion in penalty shooting.

In the cooperative task (Figures 9(a)-9(b)), we again observe



little variation between full and restricted visibility. However,

in the adversarial task (Figures 9(c)-9(d)), the intensity of

commanded motion is stronger in the full visibility case.

To further quantify this discrepancy, Figure 10 shows heat

maps for all striker and goalkeeper trajectories in the adver-

sarial task. It can be seen that although the trajectories of

the autonomous striker are similar in both cases, goalkeepers

move towards the edges of the goal less frequently in the

second case. This partly explains the higher number of goals

conceded by teleoperated robots under restricted visibility.
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(a) Cooperative task.
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(b) Adversarial task.

Fig. 11. Idle times per subject. The idle time is the percentage of the overall
time during which no command was sent from the subject to the robot.

−600 −400 −200 0 200 400 600 800

−600

−400

−200

0

200

400

600

Absolute X Position

A
b
s
o
lu

te
 Y

 P
o
s
it
io

n

 

 

Ball position

Striker Trajectory in a Missed
Attempt − Full Visibility

Striker Trajectory in a Goalscoring
Attempt − Restricted Visibility

(a) Striker trajectories.
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(b) Goalkeeper control inputs. Posi-
tive direction: left.

Fig. 12. Effects of idle time on performance of a specific subject. (a): Two
similar trajectories by the striker against this subject, one per visibility case.
Only the full visibility attempt was saved by the teleoperated goalkeeper. (b):
Illustration of the variation of the subject’s side motion between these trials.

Moreover, we looked at how control inputs varied between

tasks on a subject-to-subject basis. To this end, we measured

the average idle time, i.e. the percentage of time during which

no command was input by a subject (Figure 11). Idle time is

considerably higher in penalty shooting, where subjects spend

more time observing the autonomous robot’s approach before

they move their own robot. However, we also note that both

the percentage of subjects whose idle time increases when

visibility is restricted, as well as the average rate of this

increase, are considerably higher in the adversarial task.

Restricted visibility was also found to impact the response

time of subjects in the adversarial task. To illustrate this effect,

Figure 12(a) two similar autonomous striker trajectories (one

for each visibility case) against a subject, and the correspond-

ing user inputs. Although the trajectories are similar, only the

full visibility one was saved by the teleoperated goalkeeper. As

seen in Figure 12(b), this discrepancy is partly explained by the

more delayed response in the restricted visibility case, where

the subject needs more time to make sense of the interaction.

C. Statistical significance

1) Main hypothesis: In order to assess the statistical signif-

icance of our overall results, we tested for the contradiction

of the main experimental hypothesis as stated in Section I. In

other words, our null hypotheses are that a worse performance

would be observed for a majority of subjects (greater than

75%) in the simple cooperative task, and for a minority (less

than 25%) of subjects in the more complex strategic task. To

assess these null hypotheses, we conducted a t-test for the

overall performance indicators – the average speed in target

allocation, and the number of goals conceded in the penalty

game. We measured the percentage of subjects for which

performance deteriorated in each case, and computed

t =
x̄− µ0

s
·

√

n, (1)

where x̄ is the sampled percentage, µ0 is the hypothesised per-

centage (75% in the cooperative task, 25% in the adversarial

one), s is the sample standard deviation, and n is the sample

size. Based on a two-tailed t-test for the two null hypotheses,

we obtain p-values of 0.013 and 0.03, respectively. So, at a 5%

significance level, we reject the null hypotheses, and conclude

that limited perception does not have a significant impact in

the cooperative task, while having a non-negligible effect in

the adversarial one which features more severe constraints on

perception and action – this was our original main hypothesis.

2) Explaining factors: The difficulty in the adversarial

task lies in the determination of the autonomous adversary’s

strategy, and the estimation of the absolute states of the

interacting robots. As these challenges are not independent

of each other, they cannot be explicitly decoupled in order to

assess their individual contribution to the overall difficulty of

the task. However, we can assess the correlation between the

two secondary metrics, the idle time and the distance from

the optimal position, and the overall performance. In defining

these metrics, our hypothesis is that increases in each metric

between visibility cases are linked to performance degradation,

i.e. that the overall mean goal difference (Table 7(b)), and

the corresponding difference for subjects impacted by each

metric should be comparable (i.e. not differ by more than 1

goal, which is approximately equal to the computed standard

deviation).

For each metric, we conducted a two-sample pooled t-test to

assess its effect on overall performance. We measured statistics

for the subjects for which idle time/distance from optimal

position increased under limited perception, and computed

t =
(x̄1 − x̄2)− d0

sp

√

1

n1

+ 1

n2

, s2
p
=

(n1 − 1)s2
1
+ (n2 − 1)s2

2

n1 + n2 − 2
(2)

where x̄1, s1, n1 are the overall mean goal difference, standard

deviation, and sample size, x̄2, s2, n2 are the corresponding

values for the subset of subjects for which the value of the

metric increased, and d0 is the hypothesised mean difference.

We tested for the contradictory null hypotheses that the two

metrics cannot be used to explain performance degradation,

i.e. that the difference between each x̄2 and the overall mean



x̄1 will be more than 1 goal. For these tests, we obtain p-

values of 0.010 for idle times and 0.008 for optimal positions.

At a 5% significance level, we reject the null hypotheses, and

conclude that an increase in the idle time or the distance from

the optimal position is likely to be matched with an increase

in the number of conceded goals under restricted visibility.

D. User experiences

(a) Cooperative task. (b) Adversarial task.

Fig. 13. User experiences on restricted visibility.

After each experiment, we asked subjects to give us their

opinion on the impact of restricted visibility on their behaviour

(Figure 13). In both tasks, most subjects stated that limited

perception impacted their performance. However, the domi-

nant response in the first case was that restricted visibility

made the task only “slightly harder”, whereas most users found

the adversarial task “considerably harder”. Another interesting

result was that some subjects found the penalty game easier

under limited perception, with one subject labelling it “consid-

erably easier”; not surprisingly, this is the (only) subject who

in Figure 7(c)-right saved all 5 shots under restricted visibility.

VI. CONCLUSIONS

Our experimental analysis suggests that limited visibility is

more likely to affect teleoperation performance in challenging,

adversarial tasks, which require continuous inference of the ab-

solute state and strategy of an interacting robot. Furthermore,

restricted perception appears to affect the ability of humans

to (inter)act strategically, with several subjects being deceived

by the autonomous adversarial robot more easily. By contrast,

when the task is not particularly challenging and requires

only very basic modeling of robot states and strategies, most

subjects are likely to be unaffected by this restriction.

Mixed robotic environments are becoming increasingly im-

portant in human-robot interaction, as several applications

demand an interplay between autonomous and teleoperated

agents in complex physical settings. In many such domains

(e.g. rescue robotics), perceptual information is inherently

limited, so it is important to identify situations where humans

might fall short in teleoperating a robot, and how autonomous

robots can compensate for these weaknesses. In this respect,

our work contributes an empirical evaluation which highlights

interaction scenarios and visibility conditions where human

control is likely to be problematic, and where autonomous

robots can perform more robustly. Our experiment also in-

forms decisions about when to assist human decision makers

in teleoperation, and how to structure the balance between

human command and robot autonomy. We believe that our

methodology can be applied in the design of mixed robotic

teams, where there is a need to empirically determine both

the optimal composition (how many autonomous/how many

teleoperated?) of a team, and the roles (what should each au-

tonomous/teleoperated robot do?) of its constituent members.
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