
Learning in Non-Stationary MDPs as Transfer Learning

(Extended Abstract)
M. M. Hassan Mahmud

School of Informatics
University of Edinburgh
Edinburgh, EH8 9AB

hmahmud42@gmail.com

Subramanian Ramamoorthy
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB

s.ramamoorthy@ed.ac.uk

ABSTRACT
In this paper we introduce the MDP-with-agents model for address-
ing a particular sub-class of non-stationary environments where the
learner is required to interact with other agents. The behavior-
policies of the agents are determined by a latent variable that changes
rarely, but can modify the agent policies drastically when it does
change (like traffic conditions in a driving problem). This unpre-
dictable change in the latent variable results in non-stationarity.
We frame this problem as transfer learning in a particular sub-
class of MDPs, which we call MDPs-with-agents (MDP-A), where
each task/MDP requires the learner to learn to interact with oppo-
nent agents with fixed policies. Across the tasks, the state and ac-
tion space remains the same (and is known) but the agent-policies
change. We transfer information from previous tasks to quickly in-
fer the combined agent behavior policy in a new task after some
limited initial exploration, and hence rapidly learn an optimal/near-
optimal policy. We propose a transfer algorithm which given a col-
lection of source behavior policies, eliminates, using a novel statis-
tical test, the policies that do not apply in the new task in time poly-
nomial in the relevant parameters. We also perform experiments in
three interesting domains and show that our algorithm significantly
outperforms relevant alternative algorithms.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Intelligent Agents

General Terms
Algorithms

Keywords
Single agent Learning, Planning, Agent theories, Modelling other
agents and self, Computational architectures for learning

1. THE MDP-A MODEL
In this paper we introduce the MDP-with-agents model for learn-

ing in non-stationary environments where the non-stationarity arise
from the actions of K other agents whose behavior policy may
change over time. The behavior-policies are determined by a la-
tent variable τ that changes infrequently, but when it does, may
drastically alter the policies of the agents. That is, each value of τ

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito,
Jonker, Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Minnesota,
USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

defines a regime, and the change in value causes a regime change.
Our model captures domains that require interacting with robots
or other agents who operate in accordance with distinct behavior-
profiles. For instance, in a driving problem, the overall behavior of
other drivers depend on the latent variable ‘traffic conditions’. We
use standard and novel statistical tests to quickly determine whether
any of the previous profiles are being used in the current task, and
if so use that fact to compute an optimal policy for the new task.
We give sample complexity bounds for the algorithm to eliminate
incorrect profiles when we use our tests and then demonstrate its ef-
ficacy in experiments. Full details appear in the long version of the
paper [3], and below we describe our approach and results briefly.

We model the above problem as transfer learning for reinforce-
ment learning (TLRL) in MDPs where each MDP represents a par-
ticular regime. In TLRL we try to use solutions of MDPs solved at
a prior point in time (the source MDPs) to solve a new but related
MDP (the target MDP) much faster (see [4],[5] for an introduction
reinforcement learning in MDPs and [6] for a survey on TLRL). In
our case we use agent behavior in source MDPs (previous regimes)
to infer their behavior in the target MDP (current regime).

We assume that the reader is familiar with MDPs, MDP policies
and value functions [5]. To model regimes, we introduce a sub-
class of MDPs with the additional presence of K other agents with
fixed policies called MDP-with-agents, (MDP-A in short form).
Each MDP-A is defined by the tuple (S,A,R, T, L, γ,A′, τ), where
A′ is a joint action space of K different agents and τ is the joint
behavior profile/type of the K different agents. Each τ is a dis-
tribution over A′ indexed by s, a – i.e. τs,a is a distribution over
A′. The transition distribution and reward function, respectively
have the form T (·|s, a, a′) and L(s, a, a′) where s ∈ S, a ∈ A,
a′ ∈ A′. The joint-action a′ is such that a′ ∼ τs,a(a

′). Since
τs,a depends only on s and a, each MDP-A is indeed a MDP;
we recover the standard MDP transition and reward functions as
follows: P (s′|s, a) =

P
a′ T (s′|s, a, a′)τs,a(a′) and R(s, a) =P

a′ L(s, a, a′)τs,a(a
′). The class of MDPs we consider are iden-

tical with the exception of the type τ . Hence each possible value of
τ implies an MDP and we associate with each τ the optimal policy
of the corresponding MDP and denote it by π∗τ .

When solving the target MDP-A, we assume that all the com-
ponents defining it are known except for the type τ . Given τ , we
would be able to compute the optimal policy immediately. In the
transfer formulation of our problem, we are given as input a set of
source types/MDPs τi, 1 ≤ i ≤ N . If we can determine quickly
that τ = τi, we can use π∗τi to attain optimal performance rapidly.
This is precisely the idea of our algorithm Type-Elimination, given
in sketch form as Algorithm 1 (see [3] for the full algorithm). The
main feature of Type-Elimination is the use of a statistical test
f(p, x) that given a distribution p and a sample x, returns the prob-

ability that p could not have generated x. So given a set of opponent
agent actions smp(s, a) observed at state s after choosing action a,
if f(τi, smp(s, a)) > α we can eliminate τi as the true type with
probability α. We introduce a novel test f based on the Hoeffding
bounds, and is a ’inverting’ of the typical way the bounds are used.
Instead of determining the accuracy of the estimate of the mean
given a sample, we measure how likely it is that a given distribu-
tion could have generated a sample with the observed mean.

Algorithm 1 (Sketch) Type-Elimination({τ1, τ2, · · · , τN}, s0, f, α)

1: Input: Previous types τj , 1 ≤ j ≤ N , initial state s0, statisti-
cal test f and confidence level α.

2: Initialize: Candidate types VT = {τi : 1 ≤ i ≤ N}, t = 0,
∀s, a smp(s, a) = ∅.

3: for t = 1 to T and |VT| > 0 do
4: if τst,a defined for some a [* hence an opportunity to possibly

eliminate a type from VT *] then
5: Take action at , arg maxa mina′,τi∈VT

[f(smp(st, a)a
′, τi(st, a)) − f(smp(st, a), τi(st, a))],

where smp(st, a) are the agent actions a′ observed at
s, a so far [* so in the worst case, at maximizes the increase in
f , and moves us most toward eliminating a type in VT *].

6: else
7: Take action at , ρ(st) where ρ , arg maxπ∗τi

V
π∗τi (st)

[* choose optimistic action given types in VT *].
8: end if
9: Observe st+1, rt+1, a′t; update transition and reward es-

timates P̂ (.|st, at) and R̂(st, at), update smp(st, at) ←
smp(st, at) ∪{a′t}.

10: Remove τi from VT if f(τi, smp(st, at)) > α.
11: end for
12: if t < T [* true type was not in VT, *] then
13: Run R-Max for T -t steps, initialized with P̂ and R̂.
14: end if

2. EXPERIMENTS: NICHE FACTORY

Figure 1: Results for the niche factory domain. Policy Reuse
(PR1) eventually converges (not shown) but Type-Elimination
(TE1) completely dominates both R-Max (RMX) and PR1.

From a transfer learning perspective, our algorithm tries to effi-
ciently reuse the source policies π∗τi and so solves the same prob-
lem as the Policy-Reuse algorithm [2]. Hence, in our experiments,
we compare our method to this algorithm. We performed a set of
experiments on 3 domains and due to space reasons we only re-
port results from one, the niche factory domain (the results from
others are comparable). Here the goal of the learner is to effec-
tively compete with other agents for shared resources in a factory

floor that tries to address ever changing demands of customers in
niche markets [1]. The learner and other agents are each respon-
sible for assembling different products, aimed at different niche
markets. The customer demands/market conditions change unpre-
dictably, which translates to an unpredictable change in demand on
resources. Figure 1 presents the result for a particular target task
(market condition) given a set of source task (previously encoun-
tered tasks (market conditions), averaged over 10 trials. The result
are representative of other target tasks. We compared Policy Reuse
(PR1) with Type-Elimination (TE1) and R-Max (RMX) as an opti-
mal pure RL baseline. Our algorithm is able to quickly identify the
true type and starts performing optimally after only a few episodes.

3. RELATED WORK AND CONCLUSION
Several algorithms for dealing with non-stationary MDPs have

been developed (for instance [7] – see long version [3] for full
discussion, including other algorithms). The main difference be-
tween our method and these previous methods is that we consider a
very specific type of non-stationarity, which we believe to be use-
ful in practice, and obtain an efficient algorithm for that scenario,
whereas they consider the problem of non-stationary MDPs in full
generality. Correspondingly, as we discuss in the long version of
our paper, they have fundamentally weaker performance guarantees
for our setting. A similar relationship holds between MDP-A and
more general models of handling multi-agent systems like Markov
games and I-POMDPs. In terms of transfer learning methods, Pol-
icy Reuse is the only one that is most directly related to ours. For
future work, our goal is to relax the assumptions of known tran-
sition and reward functions, allow types to change between and
within episodes, complete the picture by introducing a method to
acquire the types in a continual ’lifelong’ learning setting and do
more experiments in interesting domains. We believe all of the
above can be done using the tools we have already developed.

4. ACKNOWLEDGEMENTS
We undertook the work in the Robust Autonomy and Decisions

group, School of Informatics, University of Edinburgh. The group
is supported in part by grants from the UK Engineering and Physi-
cal Sciences Research Council (EP/H012338/1), the European Com-
mission (TOMSY Grant 270436, FP7-ICT-2009.2.1 Call 6).

5. REFERENCES
[1] A third industrial revolution. Economist, April 21st, 2012.
[2] F. Fernandez, J. Garcia, and M. Veloso. Probabilistic policy

reuse in a reinforcement learning agent. In Proceedings of the
5th International Conference on Autonomous Agents and
Multiagent Systems, 206.

[3] M. M. H. Mahmud and S. Ramamoorthy. Learning in
non-stationary mdps as transfer learning. Technical report,
University of Edinburgh, 2013.

[4] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley and Sons,
1994.

[5] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[6] M. Taylor and P. Stone. Transfer learning for reinforcement
learning domains: A survey. Journal of Machine Learning
Research, 10:1633–1685, 2009.

[7] J. Y. Yu and S. Mannor. Arbitrarily modulated markov
decision processes. In Proceedings of the IEEE Conference on
Decision and Control, 2009.

