
Induction and Learning of Finite-State controllers from
Simulation

(Extended Abstract)
M. Leonetti

Sapienza University of Rome
via Ariosto 25

00185 Rome, Italy
leonetti@dis.uniroma1.it

L. Iocchi
Sapienza University of Rome

via Ariosto 25
00185 Rome, Italy

luca.iocchi@dis.uniroma1.it

S. Ramamoorthy
The University of Edinburgh

10 Crichton Street
Edinburgh EH8 9AB, UK

s.ramamoorthy@ed.ac.uk

ABSTRACT
We propose a method to generate agent controllers, repre-
sented as state machines, to act in partially observable envi-
ronments. Such controllers are used to constrain the search
space, applying techniques from Hierarchical Reinforcement
Learning. We define a multi-step process, in which a sim-
ulator is employed to generate possible traces of execution.
Those traces are then utilized to induce a non-deterministic
state machine, that represents all reasonable behaviors, given
the approximate models and planners used in simulation.
The state machine will have multiple possible choices in
some of its states. Those states are choice points, and we
defer the learning of those choices to the deployment of the
agent in the actual environment. The controller obtained
can therefore adapt to the actual environment, limiting the
search space in a sensible way.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE: Problem Solving, Control Methods, and Search

General Terms
Algorithms

Keywords
Single Agent Learning, Robot planning, Agent development
techniques, tools and environments

1. INTRODUCTION
Decision making in unknown environments is character-

ized by uncertainty at many and different levels. Part of
the uncertainty can be captured by models for planning un-
der partial observability, to which a great deal of attention
has been payed in recent years. A paramount source of un-
certainty lies in the assumptions behind such models them-
selves, especially if the problem has not been synthesized,
but arises from an existing application. This is true re-
gardless of how accurately the model has been designed or
learned. Such uncertainty cannot be dealt with at planning

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

time, and requires to monitor the execution in order to iden-
tify any discrepancies between what is expected and what is
perceived.

Hierarchical Reinforcement Learning (HRL) [1] allows the
designer to provide structure to the policies searched, con-
straining the exploration in fully observable domains. This
is a fundamental aspect for real-world applications, as time
is a strictly limited resource, and robotic agents are sub-
ject to wearing and tearing. The automatic definition of the
aforementioned structures is still an open problem, and is
usually carried out by hand.

In the following, we propose a method to generate agent
controllers automatically, combining several ideas developed
in the literature of planning under partial observability and
reinforcement learning. We define a multi-step process, in
which increasingly accurate models - generally too complex
to be used for planning - are employed to generate possible
traces of execution by simulation. Those traces are then
utilized to induce a machine with non-deterministic states.
Those states are choice points, and we defer the learning of
those choices to the deployment of the agent in the actual
environment.

2. GENERATING CONTROLLERS FROM
SIMULATION

In this section we define the process to generate a finite
state controller for a given problem under partial informa-
tion.

2.1 Environments, problems, and controllers
We begin with the definition of a dynamic environment
E = 〈A, O, S, I, ∆, Ω〉 in which A is a finite set of actions,
O is a set of observations, S is a set of states, I ⊆ S is a
set of initial states, ∆ : S ×A×S is the transition relation,
Ω : S → O is the observation function. We assume to have
available only A and O, while all the other components of
the environment are unknown. We also further assume, for
this paper, that the environment is deterministic.

A generalized planning problem over an environment is a
tuple (defined by Bonet et al [2]) P = 〈F, I, A, G, R, O, D〉
where: F is a set of primitive fluents, I is a set of F-clauses
representing the initial situation, A is a set of actions, G
is a set of literals representing the goal situation, R is a
set of non-primitive fluents, O ⊆ R is the set of axioms
defining the fluents in R. In the literature [2, 3], this problem
specification is used to derive, by logic, a controller. Due to
the uncertainty on the definition of the environment, we only
assume to have A, and G. That is, we assume to know the

available actions and to be able to recognize the goal states.
Such a problem cannot be solved directly by any planner,
nor learned as a POMDP, as the model is largely unknown -
including the description of the state space. Such a situation
is described as partial information, which includes partial
observability. Being a problem on a actual environment,
however, experience can be gathered by acting in it.

A controller is a tuple C = 〈Q, A∗, O∗, δ, q0〉 where Q is
a set of states, q0 ∈ Q is the initial state, and A∗, O∗, and δ
are the finite set of actions, set of observations, and transi-
tion relation respectively. The (partial) transition relation δ
maps pairs 〈qi, oi〉 of controller states and observations into
actions, and next states qi+1. The controller is deterministic
if given a pair 〈qi, oi〉, the action and consequently the next
states are uniquely determined. A deterministic controller
C over an environment E produces, from each initial state
s0, a single trajectory tC(s0) = 〈o0, q0, o1, q1, . . . , of , qf 〉. A
non-deterministic controller, on the other hand, can produce
a set of trajectories that we denote with TC(s0).

A trajectory tC(s0) is a solution of P from an initial state
s0 iff the terminating observation of is such that of |= G.
We are assuming that of |= G ⇒ sf |= G, that is, if an ob-
servation fulfills the goal specification, the underlying, un-
observable, state is a goal state. A deterministic controller
solves a problem P over an environment E iff each trajec-
tory tC(s0), from each initial state s0, is a solution from s0.
We say that a non-deterministic controller C can solve a
problem P if ∃t ∈ TC(s0) such that t is a solution from s0.

Finally, we define a restriction of a problem P to Î ⊆ I

as the sub-problem P (Î) = 〈F, Î, A, G, R, O, D〉.

2.2 Simulators
We assume the existence of another environment E ′ on

which we can define a problem P ′. Informally, E ′ is a sim-
ulator for E , and comprises the designer knowledge of the
environment. The characteristic of a simulator is to be a
model that provides an approximation of the environment E ,
that is usually too complex to be used for planning. In such
a model, however, experience can be gathered much more
cheaply than in E . We acknowledge the inescapable differ-
ences between E and E ′, and account for a learning phase to
optimize the controller generated in the latter to act in the
former. We do not define any direct relationship between E
and E ′, we shall rather establish one through controllers.

Although we have a complete specification of both E ′ and
P ′, we only use them through simulation, that is, to generate
trajectories. P ′ can be partially observable, but does not
necessarily have to. Furthermore, we assume the existence
of a decision maker that can solve P ′ in E ′.

2.3 Controller induction
The decision maker is deployed in E ′ to generate trajec-

tories t′(s′0) that are solutions to P ′.
Considering each action in A′ as a symbol, the set of tra-

jectories that are solutions to P ′, from which observations
are removed, form a language. We induce a finite determin-
istic automaton C′ = 〈Q′, A′, ∅, δ′, q′0〉 that accepts such a
language. Note how this is equivalent to a controller with
an empty observation set.

Finally, we expand the edges of C′ to accommodate the

observations of P . We define a controller Ĉ = 〈Q′, A′, O, δ̂,
q′0〉 obtained from C′ such that for each observation o ∈ O,

δ̂ connects a state q′i to a state q′j when observing o and
by executing a′ ∈ A′, if and only if δ′ connects q′i to q′j by
executing a′.

If the controller Ĉ obtained through the process just de-
scribed can solve a reduction of P in E we say that the
composition of the decision maker, E ′, P ′, and the method
used to induce the automaton is admissible. This can be
verified by executing Ĉ in E .

2.4 Reinforcement learning on controllers
The controller Ĉ, obtained through simulation and au-

tomaton induction, provides at the same time a constraint
to the possible behaviors, and a partial specification of a
solution for a problem that could not otherwise be solved.
If such an automaton is deterministic no further improve-
ment is possible, and it constitutes a completely specified
solution to P . More interestingly, if such a controller is
non-deterministic, learning in the actual environment can
determine (and be limited to) the behavior at choice states.

In order to generate a non-deterministic controller Ĉ the de-
cision maker must be able to produce more than a solution
trajectory, from at least some initial states. The two options
are not mutually exclusive.

A stochastic process is derived from Ĉ according to the
procedure presented by Leonetti and Iocchi [4]. The result-
ing process is Non-Markovian if the memory embedded in
the controller and the observations is not a sufficient statis-
tics for the reward. If that is the case, a policy can still be
learned with a specific algorithm [6, 5].

3. CONCLUSION
We proposed a method to generate agent programs, in the

form of state machines, by combining different components:
an initial decision maker, available to the designer to include
any previous knowledge about the task; a simulator, that
is, a model too complex to be used for planning, but from
which possible trajectories can be extracted; the induction
of an automaton that accepts the extracted trajectories; and
finally reinforcement learning, on the derived state machine,
directly in the actual domain. Simulators are commonly
employed, but are rarely integral parts in the development
of agent programs. Constraining the final learning, through
the interaction of all those components, significantly limit
the search space in the actual domain.

4. REFERENCES
[1] A. G. Barto and S. Mahadevan. Recent advances in

hierarchical reinforcement learning. Discrete Event
Dynamic Systems, 13(1-2):41–77, 2003.

[2] B. Bonet, H. Palacios, and H. Geffner. Automatic
derivation of memoryless policies and finite-state
controllers using classical planners. In Proc. of ICAPS,
pages 34–41, 2009.

[3] G. De Giacomo, F. Patrizi, and S. Sardina. Agent
programming via planning programs. In Proc. of
AAMAS, pages 491–498, 2010.

[4] M. Leonetti and L. Iocchi. Improving the performance
of complex agent plans through reinforcement learning.
In Proceedings of AAMAS, volume 1, pages 723–730,
2010.

[5] M. Leonetti, L. Iocchi, and S. Ramamoorthy.
Reinforcement Learning Through Global Stochastic
Search in N-MDPs. In Proceedings of ECML-PKDD,
volume 2, pages 326–340, 2011.

[6] T. J. Perkins. Reinforcement learning for POMDPs
based on action values and stochastic optimization. In
Proceedings of the National Conference on Artificial
Intelligence, pages 199–204, 2002.

