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Abstract

Although a manipulator must interact with objects in terms of their
full complexity, it is the qualitative structure of the objects in an environ-
ment and the relationships between them which define the composition
of that environment, and allow for the construction of efficient plans to
enable the completion of various elaborate tasks. This paper presents an
algorithm which redescribes a scene in terms of a layered representation,
from labeled point clouds of the objects in the scene. The representation
includes a qualitative description of the structure of the objects, as well as
the symbolic relationships between them. This is achieved by constructing
contact point networks of the objects, which are topological representa-
tions of how each object is used in that particular scene, and are based
on the regions of contact between objects. We demonstrate the perfor-
mance of the algorithm, by presenting results from the algorithm tested
on a database of stereo images. This shows a high percentage of correctly
classified relationships, as well as the discovery of interesting topological
features. This output provides a layered representation of a scene, giving
symbolic meaning to the inter-object relationships useful for subsequent
commonsense reasoning and decision making.

1 Introduction

As robots are becoming more capable of performing a wide range of tasks, and
make the move from carefully engineered to open and unknown environments,
the need for concise representation of a widely varying world is becoming more
pertinent. These robots must deal with immense variability in the structure of
the world, for example a manipulation robot may find objects in a wide variety
of configurations. In order for a robot to be able to manipulate these objects, it
needs to understand the qualitative structure of the relationships between them
independent of other quantitative variation.

∗B. Rosman (B.S.Rosman@sms.ed.ac.uk) is with the Institute of Perception, Action and
Behaviour, in the School of Informatics, University of Edinburgh, Edinburgh, UK, and with
the Mobile Intelligent Autonomous Systems (MIAS) group at the Council for Scientific and
Industrial Research (CSIR), South Africa.
†S. Ramamoorthy (s.ramamoorthy@ed.ac.uk) is with the Institute of Perception, Action

and Behaviour, in the School of Informatics, University of Edinburgh, Edinburgh, UK.

1



Furthermore, with the move into more natural environments, robots are
more likely to encounter objects with which they have had minimal, if any, pre-
vious experience. An increase in the number of these poorly known objects in
the vicinity of an active robot suggests that new strategies for exploring and
interacting with these objects would be required. It is infeasible to enumera-
tively represent all aspects of some real-world scene if we want an agent to use
that information subsequently in real-time decision making. Another situation
where enumeration is difficult, is when manipulating articulated and flexible
objects: complicated objects yielding seemingly disorganised point clouds, but
with much qualitative structure.

As a result, we are particularly interested in the way in which different
objects can be represented, in terms of their own structure as well as the way
in which they relate to each other spatially in a scene. This would provide a
redescription of the scene using a layered representation, including a qualitative
level which provides interesting topological features of objects that could be
used for disambiguating actions, such as that holes are candidates for inserting
a finger to pick up an object, or that points of contact between two objects
constrain the relative motion of those objects.

The issue we address in this paper is thus, given a three-dimensional repre-
sentation of a scene consisting of several objects, using a point cloud as the raw
scene description, redescribe the scene in terms of abstractions. We use a layered
abstraction, consisting of a skeletonised description of the objects themselves,
as well as a symbolic description of the spatial relationships between these ob-
jects. These relationships are important in manipulation and decision making,
allowing for a simplification of task specifications, and allowing for vagueness
and robustness in planning.

In this work we are less concerned with detailed object identification, but
rather are interested in separating a scene into potential objects that can be ma-
nipulated, and examining the way in which these objects are used as structural
components of the environment. In this way, a wooden box and an intricate
overturned vase could be considered to be topologically equivalent, in that they
are both single connected component structures on which other objects can be
placed. This view of what constitutes an object is inspired by an emerging no-
tions regarding topological invariance and qualitative structure in a wide variety
of data sets, as in work by Carlsson et al. (Carlsson, 2009), and illustrates the
level of description we are aiming towards with our representation scheme.

In order for a robot to efficiently manipulate objects in some environment,
it needs to know something about how these objects relate to each other, e.g.,
what object is supported by what other object and constrained by what other
objects – a class of qualitative relationships defined by specific features such
as contact points. We seek to redescribe the scene in terms of these types of
relationships. The most important of these are on(·, ·) and adjacent(·, ·), and
while these are clearly a subset of the wide variety of qualitative relationships
possible, we restrict our attention in this way. By learning and identifying these
relationships in the surrounding environment, a robot can use these concepts in
the context of motion synthesis, particularly for performing tasks which require
the use of several objects.

We choose to work with point clouds here as they are gaining prominence as
a representation of the world in a number of new mobile manipulation platforms.
This is further driven by the move towards unified and generalised operating
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systems for robotic platforms, such as the open-source ROS1, which comes com-
plete with a Point Cloud Library (PCL). Point clouds provide a representation
for the three-dimensional information that a robotic platform may extract from
the world around it, in a number of ways ranging from the registration of stereo-
scopic cameras, to reconstructions from laser range scanners. As such, building
a point cloud is a convenient2 method for representing raw depth information
about the world around a robot.

This paper describes our proposal for a layered description of a scene, derived
by a novel algorithm for extracting the structure of objects and then classify-
ing the spatial relationships between the point clouds of these pre-segmented
objects. Our method creates a contact point network for each object as an ab-
straction of the object into a graph-like skeleton which identifies points where
the object either touches other objects, or comes close to touching them. This
structure is a potentially useful abstraction for manipulation, as it identifies
regions where the object has an interface with the external world. These may
be useful candidate points for functional components and surfaces of the ob-
jects, and the edges between these points indicate constraints on the objects
that could be factored into motion synthesis and planning. More concretely,
these edges provide seeding regions, around which the search for grasp points
can begin. In a sense, these skeletons can be considered as being loosely related
to the concept of affordances (Gibson, 1986), to the extent that contact points
and intra/inter-object holes indicate constraints and possibilities for manipu-
lation motion synthesis. These constraints thus allow for the disambiguation
between families of motion strategies at a global level for a particular environ-
ment, and an agent may make use of this knowledge to provide a viable first
pass at synthesising behaviours.

This paper is organised as follows: background information on this problem
of extracting structure and learning spatial relationships is given in Section 2.
Our algorithm to construct these representations from point cloud data is de-
scribed in Section 3, with experimental results in Section 4. A discussion of these
results appears in Section 5, and a summary of the conclusions, contributions
and future work is in Section 6.

2 Background

The question of how to learn the spatial relationships between different objects
is one which has received relatively little attention in the literature. This is an
important question, as it seeks to provide structural information about some
environment. This is necessary, as what is often difficult about motion planning
is disambiguating between the global structure of candidate plans, and so finding
good initial guesses at the appropriate course of action for some new scenario.
Many researchers have examined the problem of identifying objects in a scene
(Jain and Dorai, 2000; Leibe and Schiele, 2004; Desai et al., 2009; Alexe et al.,
2010), but instead of focusing on object identification, we wish to extract coarser
types of functional information which may aid a robot manipulating in that
environment, by describing the structure and constraints of the scene.

1Robot Open-Source – www.ros.org
2Low-cost sensors such as Microsoft’s Kinect for the Xbox 360

3



Galleguillos et al. (2008) examine the relative spatial arrangements of patches
in two-dimensional images, and use this to disambiguate object labels. These
relative spatial arrangements are defined in terms of bounding boxes around
patches, as well as their relative centroid locations. This provides an abstrac-
tion of a complex scene, in a similar manner to what we desire in determining
abstractions which capture the relationships between irregularly-shaped point
clouds corresponding to regions of objects in a three-dimensional environment.
This work is thus interesting, but we seek a version for extracting manipula-
tion specific information from a scene. A similar approach, based on bounding
boxes, is successfully used by Dee et al. (2009) to learn relationships between
parts of frames in videos which correspond to regions experiencing similar mo-
tion. The relative spatial relationships between regions of an image are often
used to improve interpretation and recognition in the scene (Galleguillos and
Belongie, 2010), working on the assumption that certain objects are more likely
to be found in the context of, or in particular positions relative to, certain other
objects.

An intermediate step between logical plans and low-level control is the
reasoning about large-scale structure of motion plans such as in Hauser and
Latombe (2010). These approaches require the ability to appropriately seed, at
the level of topology, the search process through strategy space.

Relational predicates are also an important component of first-order logic,
which allows for reasoning about entities and the relationships between them.
As a result, first-order logic is a language of choice for many planning problem
descriptions and algorithms (Ghallab et al., 2004), as the goal of planning is
the discovery of plans of action which can cause certain relationships between
various objects in the domain of the problem to become true, remain true, or
cease to be true.

For instance, the relationships between different regions in space can be
defined and reasoned about using an interval logic known as region connection
calculus (RCC), similarly to the way in which temporal logics reason about time
and events (Randell et al., 1992). This provides an axiomatised description of
the ways in which two regions can relate, such as ‘overlaps’, ‘contains’ and
‘equals’. This theory provides no mechanisms for extracting these relationships
from visual data, but provides a language for reasoning about them at a higher
level.

Spatial relationships between objects in the physical (or a simulated) world
are thus useful elements for agents in reasoning about planning tasks in worlds
with multiple objects, for example stacking blocks to build towers (Pasula et al.,
2007). The focus of such work is typically on methods for making inferences
about the relationships that hold in the world, rather than deducing these rela-
tionships themselves. As a result, a hard-coded approach is often taken, where
rules for recognising relationships can be designed by the system developers. An
example of the usefulness of the relationships of parts of a domain in solving a
problem can be seen in the robotic towel folding of Maitin-Shepard et al. (2010).
By finding the key structural features of towels, the corners, as well as the re-
lationships between them (hand-coded by the designers), a robot was able to
successfully fold a towel. We are interested in extracting this type of structure
and relationship in more general scenes.

A more general example of how such rules could be hard-coded would be: “if
there are points in object A above points in object B, with a vertical displace-
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ment below some ε, then A is on B”. These rules are specific to each particular
problem, and rely on the fact that these systems often use simple geometric
objects such as blocks. As a result, these rules easily break down for the kinds
of general objects which one would expect a personal robot operating in a home
environment to encounter. There is thus a need for more flexible methods for
detecting relationships between objects.

Relationships between pairs of tracked vehicles moving on a road have been
considered previously by Galata et al. (2002). The relationships captured be-
tween vehicles are similar to the types of relationships we seek, but we focus
somewhat more on achieving a robotic manipulation centric representation. Ad-
ditionally a crucial component of our layered representation is that we abstract
some notion of the internal structure of the objects which may not be relevant
in the application considered in Galata et al. (2002).

One notable approach to addressing the related problem, of relationships
between regions and elements of a scene, is that of Waltz (1975). This work
examines the broad problem of reconstructing a three-dimensional description
of a scene, given a line drawing of the scene. A scene in this case is restricted to
a set of planar-faced objects, described by the edges of each plane, and shaded
areas to indicate shadows. The crux of this method is in labeling the line
segments which are object edges. The edge labels indicate whether the edge
describes features such as the edge of a shadow, a concave bend or a convex
bend. The labels are assigned based on the types of junctions at either end
of the line segments, as well as local information such as shadows and region
orientation. Knowledge of the types of edges between two different objects in
a scene, allows the system to deduce when one object is in front of, behind or
supporting another. This work was limited in the strong requirements placed
on the input data: that it be line drawings of planar-faced objects. We instead
seek an approach which can handle point cloud data, of any objects.

Planar faces can be easily described by line drawings, but more complicated
objects require a richer representation. The idea of representing an object as a
graph, being some skeletal abstraction of the object, has found interesting uses
in describing the topology and other symbolic properties of individual objects
(Pinz et al., 2008). This is a sparse representation of what may be otherwise
complicated objects. An example of this by Katz and Brock (2008) provides a
method for discovering articulation points in objects, based on which parts of
the object maintain a constant separation while a robot is moving that object.
In this way, nodes of the graph correspond to distinctive features of the object,
and edges exist between two features if the distance between those features has
never exceeded some threshold.

We propose to build up from low-level point cloud data as acquired by sens-
ing devices, into a layered representation for redescribing the scene to aid in
reasoning and planning through the use of graph-like abstractions of objects.
Instead of basing these graphs on features of an individual object, they arise
from the way in which the object structurally forms part of a scene or envi-
ronment. Much previous work has been dedicating to detecting affordances of
objects of various sorts, such as Saxena et al. (2008) showing how good grasp
points can be identified on an object, Rusu et al. (2009) describing curvature
and other geometric properties, and Barck-Holst et al. (2009) showing how such
grasp affordances can be learnt from an ontological reasoning system. Works
such as these often focus on statistically finding useful local features. The next
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level up would be to look at how the scene is composed of these local features.
To this end, we consider the relationship patterns between sets of objects, with
the aim of learning high-level concepts relating to the topological structure of
an entire scene. This provides a platform from which inter-object spatial rela-
tionships are inferred, giving a high-level representation which may be useful
for motion synthesis by bringing down the search space.

3 Algorithm

3.1 Overview

Our algorithm builds a layered representation of a scene, by extracting spatial
relationships which exist between objects, as well as a topological description of
those objects, in order to redescribe that scene in terms of its structural prop-
erties. This description is based on easily observed features of the scene, such
as object candidates and contact points between the objects. The assumptions
made by the algorithm are described in Section 3.2. The object candidates used
by the algorithm are derived from segmented point cloud data of the scene, and
a discussion of a simple method for object segmentation is provided in Section
3.3.

Contact points are another visual feature used for extracting the structural
representation of the scene. To define these, the algorithm relies on the concept
of geometric separability between two different objects, and in particular iden-
tifies regions where the margin of separation between the two objects is small.
These regions are most likely candidates for points of contact between the ob-
jects. The reason that geometric separability is important, rather than say the
relative positions of the centres of mass of the objects, can be seen in Figure 1.
In this case, the centres of mass of the two objects are far apart, both horizon-
tally and vertically, and based on this property a relationship such as on(·, ·)
could not be easily established. Algorithms such as support vector machines
(SVMs) can compute this geometric separability reasonably efficiently, and so
we use them as a tool in this sense, although other randomised algorithms may
perform the same task. The SVM is thus trained to identify elements in the
point cloud which are critical for defining the object separation. These regions
are known as contact points, and can be connected in a graph to give a contact
point network. The details of extracting these networks are discussed in Section
3.4.

Relationships between objects are then identified by examining the displace-
ments between the contact points of two different objects. This is elaborated
in Section 3.5. Although this algorithm operates on only pairs of objects at a
time, the extension to sets of objects is given in Section 3.6.

An illustrative example of the process is shown in Figure 1, with sample
input and output of the algorithm.

3.2 Assumptions

A point cloud PM = {pi} = {(xi, yi, zi, ri, gi, bi)}, i = 1 . . .M , consists of M
points, where each point i has three dimensions of spatial information (xi, yi, zi),
as well as three dimensions of colour information (ri, gi, bi). We assume this
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Figure 1: The relationship learning process. (a) The image captured by the
left camera in a stereo camera pair. (b) The full point cloud, segmented into
the two objects, after background subtraction. (c) The support vectors with
the contact point networks of the two objects. The CPN of the ball is a single
node, and the CPN for the L-shaped block is a three-node network. Note: in our
experiments we used a user-defined threshold to discard contact points with less
than 7 support vectors. This was not used in this image, to illustrate the concept
of the network, but if it had, only the topmost contact point in the block would
have remained. (d) The inferred relationship. A and B are arbitrary symbolic
labels given to the two point clouds corresponding to the two objects.

point cloud has been captured by some device, such as stereo imaging or range
scanning, but are indifferent to the hardware used for this purpose. What is
required is that the pose of the imaging system is known. This work assumes
the camera uses the same orientation as the scene, providing a known direction
of “up”. If this orientation is not known, a separate routine may be required to
estimate this.

We assume that the background has already been segmented from the data,
leaving a point cloud PN ⊆ PM , with N ≤ M . PN is thus the subset of PM ,
where every point belongs to one of the objects in the scene.

Finally, we require that the various objects in the scene be segmented. This
is the process of assigning a single class identity ci to each point in the cloud,
depending on the object to which that point belongs. This has been the subject
of much previous work, using a number of different techniques based on various
properties of the point clouds (e.g. Jiang et al. (2000)), and so will not be
discussed here in depth. However, as it is an important part of the preprocessing
of our algorithm, one simple procedure is given in Section 3.3. This procedure
determines class identity as a function of point colour: ci = f(ri, gi, bi), and
although this is an unsophisticated procedure, it is sufficient for our current
purposes.

A potential difficulty would arise if the objects are incorrectly segmented.
However, as noted in Section 5, it may be reasonable for segmentation to fail
in this way, as object identities in a static image may not even be correctly
determined by a human, without the ability to perturb the scene. Even with
this problem though, the algorithm returns a potential interpretation of the
scene that could actually be useful, for example to seed a motion plan.

The colour information is not required by our algorithm, and so discarded.
Hence the input to our algorithm is the combination of spatial information and
object identities of each point in the cloud: P̃N = {(xi, yi, zi, ci)}, for i = 1 . . . N .
The final assumption we make is that this scene contains only two objects, i.e.
∀i, ci ∈ {0, 1}. This simplifies the demonstrations in the paper, but is not a
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strong assumption. This assumption is relaxed in Section 3.6, by considering
objects in the scene in a pairwise manner.

3.3 Object Segmentation

Presented here is one simple method for object segmentation, based on colour
information in the point cloud. This is possible if the objects in the scene are of
different colours. This strong assumption could be weakened by using a different
segmentation method, relying on factors such as discontinuities in the curvature
of surfaces fit to the point clouds, or assumptions based on the connectivity of
regions of an object.

We normalise the RGB values of each point to reduce the effects of specu-
larities, discretise the RGB space using a three-dimensional colour histogram,
and then cluster the bins using the k-means algorithm. Setting k = 3 will
generate three clusters, where the largest two clusters correspond to the two
objects being segmented, and the third cluster absorbs remaining pixels from
the background and shadows which may not have been correctly segmented out
by the background subtraction process. Note that a larger value of k could be
used if the number of objects was unknown, and any clusters of size below some
threshold could be discarded as noise. Misclassified points are cleaned up by
means of the k-nearest neighbours algorithm.

This process assigns each pixel pi in PN an identity ci = {0, 1}, as belonging
to one of the two clusters each corresponding to an object, resulting in the
segmented and labeled point cloud P̃N .

3.4 Extracting a Contact Point Network

The abstracted representation of the objects in a scene is useful as a concise
description of the scene, and for reasoning about the structure of the environ-
ment. Furthermore, this representation also aids in classifying the relationships
between the objects, as shown in Section 3.5. This representation is known
as a contact point network for each object. We now describe the process for
constructing these networks.

Given the labeled point cloud P̃N = {pi} = {(xi, yi, zi, ci)}, divide this
into two distinct point clouds representing the two objects depending on the
class identities ci, such that object Oj = {pi|ci = j} with j = {0, 1}, giving
that P̃N = O0 ∪ O1. We do not require a completely clean segmentation of
the point clouds into the two objects, and the boundary may be noisy and
slightly misaligned from the actual object boundaries, provided the noise does
not qualitatively change the relationship between the objects.

The first step is to identify the contact regions between the two objects. This
is done by training a support vector machine (SVM) to classify the two (already
separated) objects, by defining a decision boundary between the classes which
maximises the margin, being the smallest distance between any of the training
points and the decision boundary (Bishop, 2006).

A conventional use of an SVM as a classifier might use features of the scene
to classify whether or not a given test scene represents a particular predicate.
Instead, we are using the property that an SVM also efficiently computes the
geometric separator between two point sets, by classifying points as belonging
to one of these two sets, which in this case are objects. The support vectors are
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thus in our case the features which are extracted from the data by the SVM,
giving the contact points as markers of the geometric separators.

The training data provided is the combined dataset O0∪O1, which is labeled
by object identities. As the data to be classified is in the form of two objects, it
can be assumed that they are likely to form two regions (although each object
may actually consist of multiple disconnected regions if it is obscured), with
some unknown relationship between them. For this reason, we assume the
objects are non-linearly separable, and so use a radial basis function (RBF) as
the kernel in the SVM. An RBF is used as it is a nonlinear kernel with a localised
response, and so is well suited to real-world objects, as the bulk of their mass
is situated in closed regions with nonlinear boundaries.

The support vectors define the boundaries of the two objects. Let the sup-
port vectors for object Oi be vi. They are dense at any points where the
two objects touch (or come near to touching) as these are regions where the
boundary definition requires a high level of precision. Support vectors are also
sparsely scattered around the silhouette of the object, as the contours of the
decision boundary are defined with low precision in these regions. This is par-
ticularly true when the objects have a highly nonlinear boundary between them.
As a result, regions of the object with a high concentration of support vectors
are regions of the object at which the object is potentially in contact with an-
other object. Furthermore, if the objects are far away from each other in some
direction (relative to their sizes), very few if any support vectors are identified.

Clustering the support vectors vi within an object provides a cluster at each
(potential) point of contact between Oi and another object, with additional
clusters of outlier points from the boundary of Oi. The centroids of these
clusters are known as the set of contact points {χi

k}, k = 1 . . .K of the object. In
practice, clusters are discarded if the number of support vectors in the cluster is
below some user-defined threshold (a threshold of 7 was used in our experiments,
but this parameter is somewhat dependent on the resolution of the data used).

The contact point network of an object Oi is defined as a graph CPNi, where
the nodes are the K contact points {χi

k}, k = 1 . . .K, and the edges e(χi
m, χ

i
n),

m 6= n are the edges of the minimum weighted spanning tree (MWST) covering
{χi

k}, with the weights given by the Euclidean distances between the nodes.
An object’s contact point network provides an abstracted representation of

the object as a skeletal structure, based on the regions of the object where
it comes into contact with another object in the scene. Although the contact
points themselves convey information on the relative positioning of objects in a
scene, the edges of the graph are useful firstly for identifying regions of an object
which could be searched for grasp points, and secondly provide more structure
to the representation. These graphs are useful for maintaining coherency of an
individual object, as well as for determining when one composition of objects is
a substructure of another. This is discussed further in Section 5. As a result,
any of a number of algorithms could be used to construct these graphs, provided
they were consistent across scenes.

3.5 Learning Relationships

Having extracted a contact point network from a pair of objects, the spatial re-
lationship between these two objects can then be established. This relationship
describes, in symbolic terms, the physical positioning of the one object relative
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to the other in the scene. We may wish to infer that “A is on B”, or that “C is
under as well as adjacent to D”.

Given the contact point networks for two objects, CPNi and CPNj , consider
all pairs of contact points (χi

m, χ
j
n). Let the displacement between these contact

points be dmn = χi
m − χj

n. This gives the oriented displacements of the two
regions of the objects corresponding to those contact points. By definition, if the
objects touch along some interface, then both objects must have a representative
contact point for that region. Those contact points will then have a small
separation displacement dmn, with the distance and orientation defining the
spatial relationship between the objects. The problem of classifying this spatial
relationship has then been reduced to the problem of classifying dmn ∈ R3.
Although these displacement vectors may not be sufficient to capture every
spatial relationship that exists in an environment as a result of, for example,
large occlusions, the use of these contact points and the displacements between
them provides us with a useful representation for abstracting a scene.

Taking a supervised learning approach to this classification requires a set of
training data, that is, a set of point cloud images of pairs of objects, where the
relationships between the objects have been provided. This input data is thus a
set of triples, consisting of object pairs and relations, {(Oi,Oj , rij)}, where rij

is a symbolic label for a relationship that exists between the two objects. By the
same procedure described above, the separation displacements can be extracted
from the training images, and then labeled by the provided relationships. Call
this set of labeled displacement vectors from the training data {(dij , rij)} = D.

To then classify the new separation displacement dquery a method such as
k-nearest neighbours can be used to assign a label to dquery based on the most
commonly occurring labels of the closest training points to dquery from D. These
labels are selected as the result of a voting scheme from the labels of the nearest
neighbours. The variance of the labels provided by the nearest neighbours can
then be used as a measure of confidence: the system is more confident of a
solution if every neighbour proposes the same particular label, than if only 50%
of them proposed that label. This acts as a quality measure of the output of
the system in the form of predicted relationships.

Consider a training image with a pair of objects, O0 and O1, where CPN0

has M0 contact points and CPN1 has M1 contact points. There will be a total
of M0M1 separation displacements for the object pair, {dmn}, m = 1 . . .M0,
n = 1 . . .M1. Each of these will receive the same relationship label r01, as this
label is provided at the level of objects, rather than regions. There is however
probably only a single separation displacement which conveys this information
accurately describing the spatial relationship. As a result, M0M1 − 1 spurious
separation displacements will also carry the label r01, even though they do
not describe that particular relationship. These could enable the erroneous
classification of a new object pair through dquery.

To overcome this issue, consider a threshold ω. A labeled separation distance
dmn extracted from the training data would only be added to D if |dmn| ≤
ω. This would prevent the incorporation of displacements which are far from
each other in the scene, although this threshold is dependent on the data. An
alternative method for overcoming this problem is to weight the contributions
of the k-nearest neighbours in classifying a label for dquery, by the inverse of
the distance from dquery. This separation threshold is a context dependent, and
therefore tunable, parameter.

10



One conjecture, yet to be examined in more detail, is that as an alternative to
the classification approach, relations can be learned in an unsupervised manner.
A similar approach of the unsupervised learning of relationships from data is
seen in work such as that of Galata et al. (2002). Using this approach, labels are
not provided for the training data. Instead, a set of separation displacements D
are clustered, using an algorithm such as x-means (Pelleg and Moore, 2000) to
determine the number of clusters as well. This approach does not suffer from
the problem of spurious labeled data points. Each cluster is then interpreted
as a unique binary relationship between two objects. These relationships can
be assigned arbitrary names, as relk, k = 1 . . .K for K relations, such that
relk : O ×O → {T, F}.

A concise description of the entire spatial relationships and abstraction ex-
traction algorithm is given in Algorithm 1.

Algorithm 1: The spatial relationships and contact point network ex-
traction algorithm

Input: A 3D point cloud with pre-segmented background P , and the
labeled training data D

Output: A contact point network for both objects in P , CPN0 and
CPN1, as well as a symbolic relationship rel between the
objects

begin
[O0,O1]←− segment-objects(P )
svm ←− train-svm(O0,O1)
[v0,v1]←− extract-support-vectors(svm)
for each object k do

χk ←− cluster(vk)
ek ←− minimum-weighted-spanning-tree(χk)
CPNk ←− (χk, ek)

end
rel←− ∅
for (χi, χj), χi ∈ CPN0, χj ∈ CPN1 do

dij ←− χi − χj

d←− nearest-neighbours(dij ,D)
r ←− voted-common-labels(d)
rel←− rel ∪ r

end

return (CPN0, CPN1, rel)
end

3.6 Extensions to Multiple Objects

The procedure outlined in the previous section describes ways in which ob-
jects can be abstracted into their contact point network skeletons, and further
that the spatial relationships between the objects can be determined from these
networks. This was all done by considering only a pair of objects at a time.
Considering larger groups of objects is a straightforward extension.

For a set of objects in a scene, the algorithm is extended to generate contact
point networks by considering all pairs of objects in the scene. The question is
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then how to merge the networks generated for a particular object when consid-
ered together with other objects. The solution is to collect the set of all contact
points from every different network representation of a single object, and then
build a new network from these points.

Let CPNi|j denote a contact point network of object Oi extracted by the
algorithm when considered together with object Oj . Now CPNi|j 6= CPNi|k,
for Oj 6= Ok. This is because the two other objects cannot interface with Oi in
the exact same way, and hence give rise to different skeleton representations of
Oi.

Merge CPNi|j and CPNi|k to give CPNi|(j∪k) by combining the two sets

of contact points. Formally, let CPNi|j have M i|j contact points {χi|j
m }, m =

1 . . .M i|j and CPNi|k have M i|k contact points {χi|k
n }, n = 1 . . .M i|k. When

merged, CPNi|(j∪k) then has M i|(j∪k) = M i|j +M i|k contact points {χi|(j∪k)
p },

p = 1 . . .M i|(j∪k). The edges of this merged contact point network are cre-
ated by constructing a minimum weighted spanning tree over the combined set
of nodes, with the weights of the edges in the tree determined by Euclidean
distances between the nodes.

Figure 2: A simple illustrative example of combining contact point networks.
Filled circles represent contact points. Solid lines are parts of the skeleton of an
object, and dashed lines show relationships between two objects. (a) The base
configuration of the scene. (b) Processing of objects A and B. (c) Processing
of objects B and G. (d) Combining the information extracted from these two
steps.

A simple illustrative example of combining two contact point networks for
a single object is shown in Figure 2. This demonstrates how a scene consisting
of three objects will be processed by the algorithm. The scene is described as:
a ball A rests on a block B, which in turn rests on the ground G. Processing
objects A and B gives one contact point in each object, which is enough to
infer on(A,B). Similarly, processing objects B and G gives one contact point
in each object, which is enough to infer on(B,G). Combining the information
extracted from these two steps, gives a symbolic description of the scene as
{on(A,B), on(B,G)}, as well as a two-node topological description of B. This
represents how the object B is used in this particular scene, rather than de-
scribing any distinctive properties of B itself.
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4 Experiments

4.1 Classifying Relationships

In order to validate our algorithm, we present the following demonstration: the
algorithm is run on the segmented point clouds generated from a set of stereo
images captured in our lab. Firstly, we show that given a set of training data,
the relationships between two new objects can be correctly classified by our
algorithm. Secondly, we show that the contact point networks extracted from
the objects convey interesting topological structure, which may aid manipula-
tion. Finally, we demonstrate the effect of merging contact point networks, as
described in Section 3.6.

For our experiments we used the following hardware configuration to acquire
our images: a stereo capture rig was constructed of two 8.0 MPixel Canon
EOS 350D cameras, calibrated and using the maximum level of magnification
supported by the standard EF-S lens (0.28m closest focus distance). Dense
registered range and colour data was collected using a Dimensional Imaging
system. Intensity images have a spatial resolution of 3456× 2304 pixels, inter-
pixel spacing is 25pixel/mm. RMS depth error is around 0.03mm. Although
the resolution used in these images was high, the results appeared fairly robust
when randomly discarding up to 70% of data points.

For the first experiment, we gathered a set of 128 stereo images, each con-
sisting of a pair of objects. The objects varied greatly in shape, colour and
texture, with the selected objects including a golf ball, blocks of various dimen-
sions, a stone, a cloth, a piece of aluminium foil, and several plastic and furry
childrens’ toys. The range of objects used demonstrate that the algorithm is not
particular to planar surfaces or convex volumes. In each case a blue material
backdrop and table cover was used. This allowed for automated mask gener-
ation for background segmentation by the Dimensional Imaging software, as a
part of the process of registering the stereo image pair from the two cameras
and converting the output into a three-dimensional point cloud. A selection of
the images which were photographed and used is shown in Figure 3.

This experiment aimed at examining two example relations: on(·, ·) and
adjacent(·, ·). The adjacent relation is considered in this case to mean that to
objects are visually next to each other in the static scene, i.e. an object A is
either to the left or the right of another object B, and so adjacent(A,B) =
left-of(A,B)∪right-of(A,B). For each image Ij with objects Oj0 and Oj1,
a label rj ∈ {0, 1}2 was prepared, where:

• rj(0) = 1 if (Oj0 on Oj1)

• rj(0) = 0 if (Oj0 not on Oj1)

• rj(1) = 1 if (Oj0 adjacent to Oj1)

• rj(1) = 0 if (Oj0 not adjacent to Oj1)

Representing the relations as a vector of labels allows for cases where one
object is both on and adjacent to the other object (possibly at different places).
Using this label representation scheme, there are thus four ways in which one
object can relate to another: on, adjacent, on and adjacent, none. In practice,
all of the images we used in our experiments had one of these four relationships
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Figure 3: A subset of 12 of the object configurations used. A total of 128 such
images were used in our experiments. In all cases the images shown are those
which were photographed by the left camera of the stereo system. Some of the
images are darker with less contrast as these photographs were taken in a second
session with different lighting conditions.

existing between the two objects. Note that for any image where the distance
between the two objects is great, there would be no contact points in either
object, and as a result no displacement vectors would be generated.

The implementation of the algorithm was in MATLAB, using the external
SVM-light implementation of Joachims (1999). In practice, this implementation
was sufficient to process an entire image in well under a second on a dualcore
desktop computer.

Each image in the dataset was run through the algorithm, and the separation
displacements dmn were extracted. A plot of these displacements is shown in
Figure 4. These carry the labels assigned to the spatial relationships between the
objects in the images. Several features are clearly visible in this data. Firstly,
there is a defined cluster describing the on(·, ·) relationship, centered at (0,−0.5).
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Secondly, there is a broad band of points above y = −0.1 which corresponds to
the adjacent(·, ·) relation. Note that this incorporates both left-of(·, ·) and
right-of(·, ·), represented respectively by those displacements with a negative
or a positive horizontal component. Object pairs which exhibit both on and
adjacent at different points should contribute displacement vectors to both
classes.

Figure 4: A plot of the x-y projection of the 3D separation displacements dmn

for the 128 images of object configurations used as training data. Each point
corresponds to a vector starting at the origin and ending at that point, and
is labeled according to the relationship exhibited in the corresponding image,
being on(·, ·), adjacent(·, ·) or on-and-adjacent(·, ·).

We test the classification ability of this method by using each image of the
training set as a testing image, in a leave-one-out cross-validation test. The
procedure used was as follows: for each image Ij , we remove that image from
the dataset. Using the remaining training data, we classify the relationships
between the objects in Ij by considering the nearest neighbours (the number of
neighbours considered in our experiments was 4, but this parameter could be
changed) to the separation displacements from that image. For the cases where
there are two relationships between the objects in the image, indicated by the
presence of multiple separation displacements, we take the union of the predicted
values. So if one separation displacement is classified as on and another as
adjacent, the description of the relationship between the objects is (on and
adjacent). Note that the label rj ∈ {0, 1}2 in each case. As each test image
came from the set of training images, we compare the predicted results to the
true results. This is shown in Figure 5.

As may be expected, the method suffered most at the interface between the
two clusters. This is indicative of the fact that humans often struggle to cleanly
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Figure 5: A comparison of the true and predicted object relationships

differentiate between these relations. For example, two objects leaning against
each other could be described as either on or adjacent. The confusion matrix of
the predicted and true labels is:

Actual
on adjacent both none

on 64 6 13 0
Predicted adjacent 2 20 5 0

both 4 5 12 0
none 0 1 0 0

As can be seen, the cases with which the algorithm had the most difficulties
were those when both relationships were present. These were often misclassified
as being on. We can explain this problem by considering two cases for when
one object may be both on and adjacent to another. The first is if these two
relationships occur at disjoint regions in the object. This will give rise to a
pair of separation displacements, one at the interface described as on and the
other at the adjacent regions. On the other hand, one region in an object may
be both on and adjacent to the same region in another object. In this case,
the separation displacement would not be classified as either relationship, but
rather an intermediate one.

The input data set of 128 images was then randomly divided into a training
set of 95 training images, and 33 testing images, corresponding to 116 training
relationships and 49 testing relationships respectively, as each object pair may
contact multiple contact points. Again using k-nearest neighbours, with k = 4,
it was found that 40 of the 49 test relationships had their on component correctly
determined, and 39 of the 49 test relationships had their adjacent component
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predicted correctly. Using the näıve confidence measure of the percentage of
the nearest neighbours with labels agreeing with the predicted values, 28 and
18 of the respective predicted relationships agreed with 75% of their nearest
neighbours from the training set.

4.2 Contact Point Networks

In addition to classifying the relationships between objects, the algorithm ab-
stracts the pair of objects into two contact point networks. The advantage of
this is that these networks are representations of the objects in terms of how
they interact with other objects in the scene. These skeletons allow an agent
interacting with the objects to uncover the topological structure present in the
individual objects, as well as the entire scene, which could then be used by the
agent to guide further interaction.

Figure 6: Using contact point networks to discover topological structure in two
scenes. The algorithmic output is shown below each scene, where the points are
the support vectors for each object, and the open circles are the contact points.

As an example of this principle, consider the two scenes in Figure 6. Both
scenes consist of an object resting on an L-shaped wooden block, but these
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objects (two wooden blocks connected by a rotary joint, and a plastic toy goat)
are very different. However, in both scenes a hole is formed as a result of the
interaction between the two objects. This is clearly visible in the contact point
networks of the objects in the scene. In both cases, the algorithm has discovered
a topological hole in the environment. This suggests that if, for example, an
agent has a motion strategy to pick up the top object from underneath for the
first scene, it could use a similar motion strategy as a candidate for performing
this action in the second scene.

This demonstrates the ability of the algorithm to abstract complicated ob-
jects and shapes down into the fundamental topological structure which arises
from the way in which these objects are used in this particular scene. Having
extracted these structures, there is a large body of literature which addresses
the topologies of graphs (see for example Cook and Holder (2007); Carlsson
(2009)), for operations such as detecting commonly occurring sub-structure.

4.3 Multiple Objects

Section 3.6 describes a method for extending the algorithm to cases where there
are more than two objects in the scene, which is to be expected from any real
environment. This extension involves examining the objects in a pairwise man-
ner, and then joining the contact point networks of the same object, provided
by its interfaces to various other objects in the scene.

Two examples of scene with multiple objects are shown in Figure 7. The
first instance shows three objects stacked above each other, with the result that
instead of each skeleton being a single point, these two points are merged into
one skeleton of two nodes for the central object. The second instance actually
represents a failed segmentation, where two objects are incorrectly segmented
into three. The same skeleton structure is observed in these two instances,
showing that each object in the first scene has an equivalent object in the second
scene, in terms of the structural use of that object in the scene. Note that even
with the failed segmentation, a viable interpretation of the structure of the scene
is extracted.

Clearly, in cases such as those in Figure 7, the objects as well as the contact
points that are detected by the algorithm are only candidates, and may not
actually correctly reflect the scene’s structure. These could perhaps be disam-
biguated by motions, such as moving components of the scene and observing
which objects move consistently together. Nonetheless, the structural abstrac-
tion in both cases mirrors the essence of the scene.

5 Discussion

The algorithm presented in Section 3 generates two different representations
of a scene. Firstly, the spatial relationships between the different objects in
the scene are extracted as symbolic predicates, and secondly the topological
structure of the objects in the scene is constructed, as determined by these
inter-object interactions.

The symbolic relationships between objects define the structure of an envi-
ronment, and as a result, learning these relationships and being able to identify
them in a static scene has important ramifications for planning and learning
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Figure 7: Examples of processing more than two objects in a scene. The point
clouds are shown, with the skeletons of the objects.

the effects of actions, as done in the work of Pasula et al. (2007). All of this
builds towards a better understanding of the overall structure and behaviour of
the components of an environment, as these relationships provide a means for
describing changes in the relative positioning of objects.

Similarly, these contact point networks are important for understanding the
capabilities of an individual object, or set of objects, and provide insight into
the topological structure of the environment. This enables reasoning and policy
reuse at a coarser, more abstract level, which is important in practice. This
is in contrast to the approach of first identifying an object from a database of
known objects, as an agent may not need to know exactly what an object is, in
order to use it.

This algorithm generates a layered representation of a scene, shown in Figure
8. At the lowest level is the point cloud, which consists of the most information,
and is the direct output of the perception system of the robot acting in that
environment. This level is useful for predicting collisions between the robot and
object, and other low level control functions.

Figure 8: An illustration of the layered scene representation
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The next level is the contact point network, which provides a manipulation
robot with a set of candidate points and edges for interacting with the objects,
as well as knowledge of similarities in structure of different parts of the scene.
Finally, the relational predicates provide the robot with symbolic knowledge of
the inter-object relationships, which can be easily used in plan formulation.

There are many useful mechanisms for reasoning about the relationships
between objects and parts of objects, such as the spatial calculus of Randell
et al. (1992). Logics such as this do not describe how the elementary concepts
would arise from data, and our work attempts to bridge that divide, by providing
a semantic interpretation of a scene in symbolic terms. Our algorithm provides
a mechanism for identifying some of these relationships in a scene, and thus
serves to ground this spatial logic calculus, thereby allowing the calculus to be
utilised by a robot.

Reasoning can also be done at the level of the topological structures observed
in the contact point networks in a scene. An example of this can be seen in the
work of Calabar and Santos (2011). Our algorithm again bridges the gap, and
would allow for the real-world versions of the spatial puzzles solved in this work,
by identifying holes and other structures in the topology of the puzzles. We are
not only interested in determining valid grasp points (Saxena et al., 2008), but
are interested in the structure of a scene as a whole.

In addition to each layer providing an agent with different means for rea-
soning about a scene, another advantage to this layered representation is an
increased robustness to segmentation failures. The most likely cause of failure
of this algorithm is a result of its dependence on a relatively clean segmentation
of the objects in the scene. The method is robust to small noise-related errors
in the segmentation, but is prone to difficulties if, say, two parts of the same
object are classified as being different objects, or conversely if two separate ob-
jects are classified as being the same object. However, as shown in Section 4.3,
a plausible explanation for the structure of the scene will still be generated. In
fact, given that any objects may be fixed together in any scene by glue or some
other medium, only the incorporation of actions to perturb the scene such as
poking and prodding would lead to a guaranteed correct object segmentation.

For the first of these cases, the segmentation of one object into multiple
parts, the algorithm will still return the correct relationship between those parts,
even if they do not correspond to whole objects. For a static scene, this is
still a plausible description of the scene, even if not the most likely. A simple
example of this is shown in Figure 9, where even though an object is incorrectly
segmented, the relationships between these regions are still correctly identified.
Using a similar methodology to the interactive perception proposed by Katz and
Brock (2008), a robot manipulating in that environment may discover that even
when subjected to various forces, the relationships between these parts remain
constant. Using this observation, the parts could be conceptually merged into
a single object. This remains the subject of future work.

Similarly, if two objects have not been separated and are instead considered
as a single object, this is also a possible description of a single scene. When
these objects are acted on, the relationship between them is likely to change,
and thus the second object could be detected. In fact, it often happens that
two objects only become distinguishable to a human under action, such as two
adjacent papers on a desk, or a stick-insect in a tree.

This algorithm is somewhat related to the idea of bootstrap learning, as
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Figure 9: Relationships between incorrectly segmented objects. The object on
the left was incorrectly subdivided into two different objects.

expounded by Kuipers et al. (2006). This paradigm aims at developing a set of
methods whereby agents can learn commonsense knowledge of the world, from
its own observations and interactions with that world. There has already been
much success in agents learning reliable primitive actions and sensor interpre-
tations, as well as recognising places and objects. Our algorithm provides that
same agent with a mechanism for learning about the different spatial relation-
ships between those objects.

As an example of this, consider Figure 10. This shows two different scenes,
each consisting of three objects stacked on each other. While stacking in the
first scene involves each object having only one point of contact with the object
below it, the second scene has two contact points between the topmost object
and the one below it. The abstract skeletal structure of the first scene in the
form of its contact point network can be seen here to be a subgraph of the
skeleton of the second scene.

Figure 10: Example of one structure as a substructure contained in another.
Without the inclusion of the objects under the dotted ellipse, the structure of
the second image is topologically equivalent to that of the first. The skeleton of
the first image is thus a subgraph of the second.
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As a result of the first scene being a subgraph of the second, an agent
operating in the space of these scenes can seed its behaviour in the case of the
second scene with the behaviours it used in the first scene, e.g. grasp points.
Furthermore, the additional components of this new structure over the previous
one afford the agent new regions on the pile of objects to manipulate through
exploratory actions.

6 Conclusion

In order for a robot to be able to manipulate objects in a meaningful way
within an environment containing spatially interacting objects, it must possess
knowledge of how the different objects in that environment are used in that
environment, as well as how they relate to one another. The set of spatial
relationships between objects is the glue which holds a scene together, and
allows for differentiation between a set of items, and a structured environment.

We propose an algorithm for learning a layered representation of an environ-
ment, including a structural abstraction as well as these spatial relationships,
and being able to classify them in either a supervised or an unsupervised man-
ner. The algorithm finds regions of contact between pairs of objects, known as
contact points, by locating areas where there is a small margin of geometric sep-
arability between the objects. Constructing a graph from these contact points
gives a contact point network which is a topological description of the role of
the object in the scene. These contact point networks provide the agent with
the ability to abstract objects into simpler topological structures. Inter-object
relationships are classified based on the separation between contact points from
the skeletons of two different objects.

The networks and the relationships provide a layered representation of a
scene consisting of multiple objects. This representation facilitates reasoning
about the objects at different levels, through the use of planning mechanisms,
as well as searching for common structure in different environments to seed
behaviours and thus significantly reduce the search space for motion synthesis.
This could enable a robot to perform comprehensive tasks in a manipulation
environment.
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