
A CHARACTERIZATION OF THE RECONFIGURATION SPACEOF SELF-RECONFIGURING ROBOTIC SYSTEMSAbstrat. Motion planning for self-reon�guring robots an be made e�-ient by exploiting potential redutions to suitably large subspaes. However,there are no general tehniques for identifying suitable restritions that havea positive e�et on planning e�ieny. We present two approahes to un-derstanding the struture that is required of the subspaes, whih leads toimprovement in e�ieny of motion planning. This work is presented in theontext of a spei� motion planning proedure for a hexagonal metamorphirobot. Firstly, we use ideas from spetral graph theory - empirially estimatingthe algebrai onnetivity of the state spae - to show that the HMR modelis better strutured than many alternative motion atalogs. Seondly, usingideas from graph minor theory, we show that the in�nite sequene of subspaesgenerated by on�gurations ontaining inreasing numbers of sub-units is wellordered, indiative of regularity of the spae as omplexity inreases. We hopethat these priniples ould inform future algorithm design for many di�erenttypes of self-reon�guring robotis problems.1. IntrodutionSelf-reon�guring systems (SRSs) are robots omprised of a olletion of robotisub-units that an physially onnet and disonnet from one another. Throughollaboration, the aggregate is apable of hanging its morphology on demand. Suhsystems o�er versatility unparalleled by monolithi robot solutions. However, onean only exploit the �exibility o�ered by SRSs if algorithms exist that an e�ientlysynthesize plans to hange from one on�guration to another. So far, developinge�ient algorithms has proved di�ult, partiularly when there are many sub-unitsto oordinate, and intriate loal onstraints to onsider.In this paper we onsider a spei� reon�guration arhiteture, the hexagonalmetamorphi robot (HMR). This arhiteture is simple to desribe, yet aptures1



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS2many of the di�ulties in planning for an SRS. We present an algorithm that, for aspei� subspae of the Claytronis HMR state spae (to be explained later) alledthe Surfae spae, is apable of solving tasks in near linear time on average. Agoal is to synthesize plans for the di�ult Claytronis HMR state spae. In priorwork, the planner presented here was ombined with an additional planner, theombination of whih solved up to 95% of shape reon�guration tasks in lineartime, on average, for tasks involving up to 20,000 units [12℄.This paper aims to explore why some some reon�guration state spaes are eas-ier to plan within, and in partiular, how these easy planning spaes an be foundontained within harder state spaes. We will use the Surfae spae as an exam-ple of an `easy' state spae that an be found within a number of possible `hard'state spaes of the HMR. We demonstrate that the subspae is well onneted (ina sense to be made preise), whih is why planning tasks an be solved e�ientlyusing greedy methods with a low probability of failure. We test this hypothesisby utilizing a sampling-based method to estimate quantitative desriptors of thealgebrai onnetivity of the state spae. We ompare the results from this speial-ized subspae against a more general model of HMR reon�guration, and disovera striking qualitative di�erene in the behavior of the algebrai onnetivity as thenumber of sub-units in the on�guration grows. The impliation is that the Surfaespae ontains few bottleneks, even when there are high numbers of sub-units.A seond desirable property of the Surfae spae is that the di�erent instanesof the reon�guration spae, orresponding to inremental addition of a module,are well ordered in a spei� sense. Spei�ally, we prove that the reon�gurationgraphs at inreasing levels of omplexity are ordered by the graph minor relation, ina way that seems to extend the notion of meta-modularization. Ordering by graphminors explains why ertain SRS models an be solved reursively in a partiularlysimple and e�ient way. We hope that these ideas might inspire further analysisof the global struture of reon�guration spaes and algorithm designs.



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS3While the spei� results of this paper are phrased in the ontext of the study of aspei� algorithm for a spei� model of a SRS, the quantitative and analytial toolsan be applied to any SRS, to explain when and why a subspae of a reon�gurationspae for an SRS may be good to plan within, providing tools for haraterizing andevaluating a subspae's suitability for e�ient planning. In future work, we hopethat these tools an be utilized to develop automated methods for identi�ation ofuseful subspaes and other abstrations, to seed the development of SRS planningalgorithms for di�erent SRS arhitetures.2. Prelim.Let P denote the set of points on a hexagonal lattie, L. The metri d : P×P 7→ Zis de�ned as the Manhattan hex distane (see [3℄ for details). We say two loations,
x1 ∈ P and x2 ∈ P are adjaent as isAdj(x1, x2) ⇔ d(x1, x2) = 1. The undiretedonnetivity graph, Gconn, of a set of loations, V ∈ P(P) (P denotes the power setfuntion) is the graph onstruted from Gconn(V ) = G(V, {(e1, e2)|isAdj(e1, e2)}).In all models of the HMR desribed here, a on�guration, c, is a onnetedset of roboti sub-unit loations, c ⊂ P(P) where ∀x, y ∈ c there exists a path in
Gconn(Y ). There are often further onstraints to the admissible set of on�gurationsdepending on the HMR model.A move, m, is an ordered pair of positions, m ∈M = P×P. A single-move plan,is an ordered sequene of moves. Whether a move is admissible depends on themotion atalog, whih is di�erent for di�erent models of the HMR.We speialize the general de�nition of a metamorphi system by Ghrist et al.[1, 6℄ for desribing HMR motion atalogs here. Ghrist et al. permitted an arbitraryalphabet of symbols to label an arbitrary embedding spae to desribe a spei�state of the system. A 'state' in Ghrist et al. work is a on�guration of sub-units for our purposes. Our alphabet for labelling the hexagonal lattie, then, issimply A = {OCCUPIED, EMPTY }. By the Ghrist et al. de�nition, a loalmetamorphi system's permissible state transitions are ompletely desribed by



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS4a motion atalog, C, whih is a olletion of generators. A generator desribeswhih labels may hange (the trae) when a given ontext is present (the support).Spei�ally, a generator, φ ∈ C onsists of a support, SUP (φ) ⊂ P(P), a trae,
TR(φ) ⊂ SUP (φ) and an unordered pair of labeled loal states, Û0,1 : SUP (φ) 7→ Asatisfying:

Û0|SUP (φ)−TR(φ) = Û1|SUP (φ)−TR(φ)In other words the labeling of Û0 and Û1 are equal over the support loations,but may di�er in the trae. For the HMR motion atalogs desribe here, the traeonsists of two adjaent loations, and the loal states are labeled to re�et that asingle unit moves from an OCCUPIED loation to an EMPTY loation.Generators desribe move lasses, but an atual movement is arried out ata spei� loation in the embedding spae. Ghrist et al. de�ne an ation of agenerator φ ∈ C as a rigid body translation, Φ : SUP (φ) 7→ L, thus providinginformation as to where the generator was applied and in what diretion. Given astate U : L 7→ A, the ation is admissible if ∀x.Û0(x) = U(Φ(x)). The result of theation on the state is
Φ[U ] :=















U : onL− Φ(TR(φ))

Û1(Φ
−1) : on Φ(TR(φ))In all the spei� atalogs used here, the trae onsists of two adjaent loationslabeled EMPTY and OCCUPIED in Û0 whih are swapped for Û1, representinga sub-unit moving to an adjaent loation. So we an work out the rigid transform

Φ from m ∈ M. The Ghrist et al. notation is very general, and in the algorithmspresented in this paper we only need to know whether a move is admissible or not,so for onveniene we de�ne the funtion matchC : M, 7→ boolean to return true ifthe move is admissible for the given atalog, C.
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Figure 3.1. Previous motion atalogs modulo isomorphisms.Green denotes the trae, where a sub-unit an move between. Blueand white respetively denote where sub-units must be/must notbe in the loal ontext for the move to be admissible. A: Theoriginal motion atalog for the hexagonal metamorphi robot byChirikjian [3℄. B: The motion atalog for the Claytronis proto-type [9℄. C: The three generators omprising of Ghrist's examplemotion atalog [1℄. D: A move permitted by the Claytronis modelbut not Ghrist's as it hanges the gross topology of the aggregate.

3. BakgroundChirikjian originally proposed the HMR [3℄. This robot was one of the earliestproposed SRSs and remains a prototypial example of a lattie-based SRS. Thestate of the SRS is entirely spei�ed by the loations of all sub-units on the lattie.This is in ontrast to hain type SRSs and unit ompressible SRSs where sub-unitsmay have further internal states, suh as joint angles.In the HMR model of motion, a sub-unit may move eah time iteration. Insingle-move planning only one sub-unit is permitted to hange lattie loation pertime step, and in multi-move planning several may hange position per time step.Whether a sub-unit an move or not is dependent on its loal ontext, as well asthe global requirement that all units remain onneted. A number of di�erent loalmotion atalogs have been developed, giving rise to several di�erent versions ofthe HMR model. Chrikjian's original de�nition was the least restritive, loallyrequiring only that a roboti neighbor was present for the moving sub-unit to pivotaround (�gure 3.1 A). However, the additional global requirement that the sub-units of the on�guration remain onneted requires expliit heking before anymove an be onsidered admissible. This global hek requires O(n) time to run.



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS6Pameha et al. were able to develop an algorithm apable of solving Chirikjianreon�guration tasks using a greedy simulated annealing proedure [16℄. Sine sim-ilar approahes fail for other similar models [11℄, we onlude that their suess wasperhaps due to the relatively unrestrited motion atalog. In general, for simulatedannealing (and other randomized approahes) to be suessful on a problem, theplanning spae must not ontain deep loal minima or related onstraints [13℄.A mehanial prototype of the HMR has been developed, apable of movingaording to the Chirikjian motion atalog [15℄. This motion atalog implies thata moving sub-unit ould be potentially ompletely enveloped by roboti neighbors,save for the empty spae it is moving into. This puts strong requirements onthe geometry of the sub-unit. If we denote the hexagonal spae as six equilateraltriangles with sides of length r, then a stationary unit must span a distane of 2r inorder to physially onnet to its six neighbors. However, when the sub-unit moves,it must squeeze through a spae as little as r, or alternatively, its neighbors mustbe ompliant in some way. In order to meet these strit requirements the prototypewas onstruted from six rotary atuators in a six-bar linkage mehanism. Thus,eah sub-unit was quite omplex, making it a rather undesirable platform for manypratial appliations.A mehanially simpler physial realization of a hexagonal metamorphi robotwas developed by the Claytronis team [9℄. This motion atalog was more restri-tive, requiring empty spae to be present opposite the sub-unit around whih themoving sub-unit was pivoting (�gure 3.1 B). The extra pivoting spae permittedthe physial units to be irles and no deformation of geometry was neessary inthe physial realization, making it desirable from the pragmati viewpoint of manu-fature. Unfortunately, the requirement of extra spae in the motion atalog makesplanning muh harder. The simulated annealing tehnique suessfully used byPameha et al. for the Chirikjian atalog requires exponential time as the numberof modules inreases [11℄. As was the ase for the Chirikjian motion atalog, the



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS7Claytronis motion atalog requires an expliit onnetivity hek to ensure theaggregate remains onneted during moves, at linear ost.In an attempt to develop a ross-model theory of self-reon�guration, Ghrist etal. developed a general de�nition of a loal metamorphi system [1, 6℄. Ghristrequired, for all loal metamorphi systems, that the motion atalog should om-pletely desribe the loal and global motion onstraints. Neither of the above men-tioned atalogs satisfy this de�nition, as the requirement that the on�gurationsdo not beome disonneted must be enfored expliitly, and separately, from theloal motion atalog. Ghrist suggested a new motion atalog for the HMR (�gure3.1) as an example of a loal version of a similar metamorphi system. Ghrist'snew HMR motion atalog prevents gross topologial hanges to our during mo-tion, suh as introdution of enlosed spae into the on�guration, or disonnetionbetween sub-groups of sub-units.The theoretial analysis by Ghrist et al. yields useful impliations for all HMRreon�guration state spaes. Ghrist represented the reon�guration state spae asa ubial omplex. Eah ube grouped moves that were ommutative. That is, asequene of moves drawn from a ube ould be admissibly applied in any temporalpermutation, i.e. the loal ontexts de�ning the appliability of the moves werenot overlapping. Further, this state omplex was of non-positive urvature, withthe immediate result that any multi-move plan (inluding single-move plans) ouldbe deformed loally into an optimal version of the same homotopy lass in O(n2)[1℄. 1The state desription of a on�guration for a HMR is the same for all modelsdisussed. It is only the admissible motions that are di�erent. One an see im-mediately from the motion atalogs (�gure 3.1), that Ghrist's motion onstraintsare more restritive than the Claytronis motion atalog whih is more restritive1Non-positive urvature in simple terms means that there are �no fat triangles� in the spae. So,the optimal shortest path an be found with a series of loal improvements from any starting pathwithin the same homotopy lass.



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS8than the Chirikjian motion atalog. Clearly, all less onstrained models an exeuteplans appliable for more onstrained models.Determining admissibility of moves in Ghrist's HMR model an be done in O(1),or in O(log(n)) persistently [11℄. In general, loal metamorphi systems are om-putationally attrative beause only loal ontexts need to be onsidered. However,in pratie, even with the additional ost of a linear ost onnetivity hek, theClaytronis model is quiker to plan for than Ghrist's HMR motion onstraints.This has been found to be true on a broad range of general planning strategies[11℄: simulated annealing [10℄, greedy searh [20℄, rapidly-exploring random trees[13℄ and probabilisti roadmap planning [8℄.A di�erent form of HMR is presented in [18℄ with O(
√

n) movement time per-formane. We onsider this to be di�erent from the other HMRs disussed so far intwo respets. Firstly, it uses an additional empty third dimension for units to moveinto during planning, whih simpli�es planning onsiderably by providing a largeempty spae for units to utilize. Seondly, eah unit is given a momentum, whihallows a single unit to move faster than one lattie loation per time unit. Theomputation e�ort required to form plans is still O(n), but for a less onstrainedmodel than the original Chirikjian HMR.In this paper, we present another subspae, alled the Surfae spae, that an beviewed as a further onstrained version of Ghrist's HMR motion atalog. It inheritsGhrist's loality and admits a simple planning algorithm to solve Surfae-to-Surfaereon�guration tasks e�iently. This Surfae state spae has been used in otherrelated work to form long distane plans within the Claytronis HMR reon�gura-tion state spae, whih allowed Claytronis-to-Claytronis reon�guration tasks tobe solved, empirially, on average, in linear time [12℄ for 97% of the state spae.An arbitrary Claytronis HMR on�guration, on average, is only a few moves awayfrom a nearby Surfae adhering on�guration using the Claytronis motion atalog.It is thus tratable to ompute a motion trajetory in the more general, and om-putationally less e�ient, Claytronis spae only a small distane to �nd a nearby
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Figure 3.2. A: A potential meta-modularization of the HMRthat permits mobility of the sub-units found in the enter of eahhexagon edge using the Claytronis motion atalog, in partiular,providing empty spae opposite the pivot loations. B: A on�gu-ration built out of 12 suh meta-modules, and an example of howloal meta-module motion primitives an be daisy-hained togetherto the e�et of moving one meta-module to an empty loation ad-jaent to the perimeter. C: Expressing the loal support requiredfor a sub-unit to enter or leave a loation.Surfae on�guration. The previous work [12℄ found a pair of nearby Surfae on-�gurations orresponding to the Claytronis start and end on�gurations in thereon�guration task, and found a trajetory between them using a more e�ientversion of the Surfae-to-Surfae planner presented here. While the algorithm washighly e�ient and operated on a large fration of the Claytronis state spae, theClaytronis-to-Surfae planning step was essentially a heuristi method that had afailure rate proportional to problem omplexity. In the interest of larity, all theanalysis in the following setions is restrited to the properties of the Surfae statespae, for whih a well-behaved motion planner is presented.So it is the nature of the reon�guration state spae of the Surfae HMR motionmodel we wish to understand further. It is worth noting that the motivation forthe Surfae state spae de�nition is removal of the planning di�ulties assoiatedwith the Claytronis motion atalog requiring empty spae opposite the pivot loa-tion. Previous attempts at abstrating away troublesome onstraints in other SRSmodels have entered around meta-modularization of the state spae [19℄. In meta-modularization the atomi planning unit is atually a olletion of SRS sub-units



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS10(�gure 3.2 A) with prede�ned sequenes of moves that permit the meta-modules tomove with fewer motion onstraints than the underlying sub-units (�gure 3.2 B).The planning task is thus simpli�ed, but at the ost of oarsening the embeddinglattie signi�antly. The drawbak of the methodology beomes apparent when oneonsiders the proportion of on�gurations in the underlying SRS state spae thathave a representation in the meta-module state-spae. Meta-module onformingon�gurations oupy an almost negligible proportion of the overall general statespae. Meta-modularization, then, does not lend itself well to being used as anintermediate path through a more general on�guration spae (for example, thereare no meta-module on�gurations for 13 sub-units for the example in �gure 3.2).Both a meta-modularization subspae and the Surfae subspae ahieve similarqualitative behavior, simplifying planning, by adding additional motion onstraintsto an underlying motion model. The Surfae spae ahieves a similar result tometa-modularization, but by sari�ing fewer on�gurations.So the motivation for this work is to shed light on the question: why is itthat adding extra onstraints an sometimes make planning harder, as in addingonstraints to the Chirikjian atalog to reate the Claytronis atalog, and yetsometimes easier, as in adding onstraints to the Ghrist atalog to reate the Surfaeatalog, or by applying a meta-modularization strategy? By identifying generalpriniples that desribe when and how adding onstraints an simplify planning,we expet advanes in reon�guration algorithms for muh harder models of SRSwhose motion state spae is di�ult to mentally visualize e.g. M-TRAN [14℄.Furthermore, adding arti�ial onstraints to a model redues the number of statesthe augmented system an express, so our work will aid in onstruting onstrainedmotion atalogs that sari�e the minimum state spae volume for a gain in planninge�ieny.
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Figure 4.1. Wrapping a tour around a on�guration. This on-�guration is not a valid Surfae on�guration beause it ontainsa kink violation (K) and a dual path violation (Dp).4. A Surfae-to-Surfae PlannerA Surfae adhering on�guration, c ∈ S, is de�ned as a on�guration that permitsa Hamiltonian path to be wrapped around the adjaent external loations (adj(c)).This requirement is ompromised by two lasses of violation. A kink violation ispresent when the peripheral tour leaves through the same edge it enters from (�gure4.1), and a dual path violation is where the tour traverses through the same loationmore than one (�gure 4.1).A valid Hamiltonian path implies several properties relevant to motion under theClaytronis and Ghrist motion atalogs. If an extra sub-unit is added, the sub-unitan move in a omplete loop around the entire perimeter of the on�guration. Thelak of dual path violations implies there is always open spae above the additionalsub-unit for pivotal spae. Absene of kink violations implies there annot be ahange of gross topology, spei�ally an introdution of enlosed spae, aused bya sub-unit bridging the empty spae adjaent to the kink (�gure 3.1 D).Note however that while the added sub-unit is able to move around the on�gu-ration freely using Ghrist's motion atalog, it may not be able to stop anywhere onthis path and still result in a valid Surfae on�guration. The moving sub-unit mayitself ause kink or dual path violations. The Surfae model's onstraints merely
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Figure 4.2. Examples of a valid Ghrist on�guration and a validSurfae on�guration. Ghrist on�gurations may ontain narrowintrusions of spae, whih prevent sub-units on the perimeter fromrossing. Surfae on�gurations, by onstrution, do not.imply that if a unit an be removed from one perimeter loation and plaed at an-other valid loation, then a sequene of Ghrist motion moves will exist to link them(although violations may transiently be generated when exeuting the underlyingGhrist sequene).Whilst the Hamiltonian path onstraint is a useful desription of the Surfaemodel's restritions, both for implementation and visualization of the path aroundthe on�guration sub-units take, we an rewrite this funtionality in terms of anew set of loal ontexts for the motion atalog. This proves that the Surfae HMRmodel is also a loal metamorphi system by Ghrist's de�nition. A major di�erenewith the motion atalog for the Surfae model ompared to the other HMR modelsis that the start and end loations for a move may not be adjaent. So a Surfaeplan is a set of moves that reloate individual sub-units from one loation on theperimeter to another, with the guarantee that a detailed sequene of onseutiveGhrist moves will exist that pass through the Surfae plan way-points.Figure 4.3 shows the generators where a unit an be added or removed froma Surfae on�guration to generate another valid Surfae on�guration. If loalstates at the single trae loation, tr, satisfy Û0(tr) = EMPTY and Û1(tr) =

OCCUPIED then we say the generator is an ADD, otherwise it is a REMOV E.A move for the Surfae model is a REMOV E followed by an ADD elsewhere.Tehnially, in Ghrist parlane, the atalog for the Surfae model is the (in�nite)
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6,6

E.1 E.2

E.3 E.4

Figure 4.3. There are four di�erent generators foradding/removing a sub-unit from a Surfae on�guration.union of all possible relative arrangements of a REMOV E and an ADD whoselabeled loal states agree.Figure 4.3 was not generated by hand. All valid Surfae on�gurations on-taining eight sub-units were enumerated using the Hamiltonian path onstraintdesription above. The relative loal ontexts of adjaent empty spae was storedand annotated with a label desribing whether a sub-unit ould be added or not.This set of annotated loal ontexts was proessed by the C4.5 algorithm [17℄ foundin the Weka[7℄ data mining library to produe a shallow deision tree. The deisiontree had 100% auray at determining what neessary loal ontext was present toadd a sub-unit, and was optimized upon valid on�gurations only. As a side e�et,the data mining tool identi�ed that a sub-unit ould not be added if it reated thepatterns shown in �gure 4.4.Lemma 1. For any given Surfae adhering on�guration, an additional modulean move around the perimeter in a omplete loop using the Ghrist motion atalog.Proof. By onstrution, disussed above. �
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Figure 4.4. A Surfae on�guration never ontains the abovepatterns of empty spae (white) and roboti sub-units (red).The Surfae-to-Surfae planning algorithm �nds an admissible sequene of Sur-fae moves in order to hange one Surfae adhering on�guration into another.From lemma 1 the resulting plan an be exeuted by a HMR onstrained by theGhrist, Claytronis or Chirikjian motion onstraints. Eah single move in the Sur-fae HMR, however, is a onatenation of several single moves by the other atalogs(a so alled, long-move) on aount of the start and end loation deoupling. Thehigh level algorithm is outlined in algorithm 1. For larity, the version presentedhere does not inlude a number of additional optimizations (see [12℄). So this spe-i� algorithm does not really run in linear time. However, the salient featuresrelevant for the present disussion have been preserved.The algorithm's main loop inrementally hanges the urrent on�guration (whihis initially the start on�guration) toward the goal on�guration by applying validSurfae moves determined by improve. The algorithm traks a set P whih rep-resents plaed sub-units. One a unit is plaed, it is no longer onsidered by the
improve sub-routine to be a possible sub-unit that an be moved. P is updatedinrementally by updateP (algorithm 2); a sub-unit is onsidered plaed if it is ad-jaent to an already plaed unit, and the goal ontains a unit at the same loation.It has been empirially determined that, on average, only O(

√
n) long-moves arerequired to transform a start on�guration into the goal on�guration[12℄.



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS15Units, n fails trials 95% C.I. of P (fail)250 264 10000 .0233 .0297500 7 10000 .0003 .0014Table 1. Probability of StoS failing to �nd an improvement inrandom tasks dereases as the number of units in the random on-�gurations inrease.
The sub-routine improve �nds a valid Surfae move that moves a sub-unit notin P to a loation that would lead to an addition to P . The improve sub-routineis highly optimized elsewhere to maximize the hanes that only a few moves needbe onsidered [12℄, but these optimizations are not inluded here. There is a smallhane that no move will improve P in whih ase the planner fails to �nd a solutionfor the reon�guration task at hand. Empirially, this seems to happen rarely. Infat, the probability of failure tends toward zero as n tends to in�nity (table 1).The result of the Surfae-to-Surfae planner is a sequene of long-moves, rep-resenting loation-to-loation traversals round the perimeter of the intermediateon�gurations. Unwrapping the long-moves into a sequene of short-moves, om-patible with other HMR models, an be done in near linear time [12℄. This ispossible beause, on average, the perimeter distane for eah long-move sales as

O(
√

n), and the number of long-moves required to reon�gure also sales as O(
√

n).Thus it appears, empirially justi�ed, that the average asymptoti performane ofthe Surfae-to-Surfae planner is nearly linear (subjet to how lose to onstanttime improve an be implemented) with an insigni�ant failure rate for large n.We wish to understand several things about this algorithm. Why does the al-gorithm asymptotially fail less as n → ∞, even though it is essentially a loalheuristi? Why an the task be solved inrementally by growing a plaed set, P ?Also, why an't the Ghrist HMR reon�guration tasks be solved in a similar fashioni.e. what makes this partiular HMR motion atalog speial?



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS16Algorithm 1 The Surfae-to-Surfae �nds a set of admissible moves to hange aon�guration c into a on�guration cgoal. A set of plaed sub-units, P , is inremen-tally grown by alls to improve. improve searhes for admissible moves to improve
P .
improve : S× S× P(P) 7→M

improve(c, cgoal, P ) ,for(∀s.s /∈ P ∧ s ∈ c,∀e.e /∈ P ∧ e ∈ cgoal )if (match(c, s, REMOV E)))if (match(c− {s}, e, ADD))return (s, e)throw error
StoS: S× S 7→Mk

StoS(c, cgoal) , Mk

P ← updateP (∅, ORIGIN, c, cgoal)while(|P | < |c|)
m← improve(c, P, cgoal)
c← c ∪ {m2} − {m1}
P ← updateP (P, m2, c, cgoal)
append(m, M)Algorithm 2 The set of plaed units, P, is updated reursively. If a loation, x, isin the urrent and goal on�guration but not in P it is plaed in P and updateP isalled on its neighbors.

updateP : P(P)× P× S× S 7→ P(P)

updateP (Pprev, x, c, cgoal) , P
P ← Pprevif(x ∈ c ∧ x ∈ cgoal ∧ x /∈ P )

P ← P ∪ {x}for(∀q.isAdj(q, x))
P ← updateP (P, q, c, cgoal)

Figure 5.1. Left, a simple example of a planning spae. Theobstale in the enter auses bottleneks in Cfree(shown in red).Right, a graph approximation of the same spae.



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS175. The Surfae Spae is Highly ConnetedIn general terms, a planning algorithm's task is to �nd paths through somespae, Cfree, for multiple start and end points. The di�ulty of the task, andtherefore the minimal omplexity of a planning algorithm, is inherently oupledto the properties of the on�guration spae. Typially, for omputational reasons,one approximates a ontinuous or otherwise omplex, Cfree, by disretization orsampling-based methods to yield a graph whose verties are states in Cfree. ForHMR planning, Cfree is naturally disrete; verties of the spae represent on�g-urations, and edges represent admissible moves (or sets of moves in multi-moveplanning, but not onsidered here).Bottleneks in Cfree are well known ompliations for planners [13℄. A bottlenekis a suitably narrow subset within Cfree that onstrains di�erent possible solutionpaths to go through it in order to traverse between muh larger subsets of thespae (�gure 5.1, in red). Iterative or sampling-based planning algorithms thatmust `disover' suh bottleneks omputationally an fae serious hallenges as theymay be naively expending preious omputational time exploring irrelevant areasof Cfree (�gure 5.1, in gray).Well founded graph-theoreti measures an onisely express what we mean bya bottlenek. Let G = (V, E) be a simple unweighted graph. A ut, W ⊂ V ,separates the graph into two sets of verties, W and V −W . Let deg(x ∈ V ) bethe degree of a vertex. Then the volume of a set of verties W ⊂ V is de�nedas vol(W ) ,
∑

i∈W deg(i). The ost of a ut on the graph is cut(W ) = |{x =

(u, v)|x ∈ E ∧ u ∈ W ∧ v /∈ W}|, in other words, the number of edges rossing theut.The Cheeger onstant of a graph, hG, is a measure of �bottlenekedness� whih�nds a small ut that separates the graph into two large volumes [4℄. It is de�nedas:
hG = min

S

cut(S)

min{vol(S), vol(V − S)}



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS18Diretly measuring the Cheeger onstant for a graph is omputationally in-tratable. It is, however, bounded by the 2nd smallest eigenvalue of the Laplaianmatrix (whih is also known as the algebrai onnetivity of the graph [4℄).The Laplaian L matrix of a graph is:
li,j :=































1 if i = j and deg(vi) 6= 0

− 1√
deg(vi)deg(vj)

if i 6= j and vi is adjacent to vj

0 otherwiseIf L has the eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn then the Cheeger onstant hG isbounded by:
√

2λ2 > hG ≥
λ2

2

λ1 is 0 for all Laplaians [4℄. λ2 is known as the algebrai onnetivity of thegraph. If a graph has a low Cheeger onstant, this implies there are small uts thatan separate large volumes of the graph. This aptures the essene of bottleneks;paths between the two volumes must be routed through a small orridor.Our hypothesis is that the on�guration spae of the Surfae model has fewerbottleneks ompared to the Ghrist model of the HMR. We will use algebrai on-netivity and its relation to the Cheeger onstant to measure the severity of bottle-neks in Cfree for the Ghrist model and the Surfae model. However, �rst note thatthe atomi moves in the Ghrist motion model represent a single sub-unit movingan adjaent loation, whereas Surfae moves represent a single sub-unit moving anumber of lattie loations. To ompare the models fairly, we reated an analo-gous de�nition of a long-move for the Ghrist model to be a sequene of onseutiveadmissible moves applied to a single sub-unit i.e. all the loations that a singlesub-unit an reah while the other sub-units remain �xed. In addition, beauseboth model atalogs don't permit gross topologial hanges in the morphology, weonly study on�gurations that do not ontain enlosed spae.



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS19Ghrist Surfaen |V | |E| λ2 |V | |E| λ22 6 15 1.2000 6 15 1.20003 33 168 1.1429 33 168 1.14294 176 1431 1.1186 176 1431 1.11865 930 10836 1.1033 900 10332 1.11116 4878 75945 1.1 4482 67725 1.09787 25480 506394 1.0872 21910 417042 1.0909Table 2. The number of verties, edges and measure of algebraionnetivity (λ2) for the Ghrist and Surfae model reon�gurationgraphs generated by di�erent numbers of sub-units (n). The statesspaes are idential up to n = 4, and only di�er marginally at
n = 7For the on�guration graphs ontaining up to 7 sub-units, it is possible to on-strut the Laplaian and alulate the algebrai onnetivity diretly. The resultsare shown in table 2. However, the reon�guration graphs di�er very little at suhlow numbers of sub-units for the two models. With few sub-units, there are notenough permutations of possible loal ontexts to di�erentiate the models. Thedi�erene between models only beomes apparent at higher omplexity levels.Unfortunately, expanding the on�guration graphs ontaining larger number ofsub-units quikly beomes intratable. So in order to estimate the properties of theCheeger onstant at higher omplexity levels, i.e. sub-unit numbers, we use a sam-pling methodology. First, we generated a random Surfae adhering on�gurationontaining n units by iteratively uniformly seleting an ADD ation to a growingon�guration (starting from the ORIGIN). Seond, we applied 1000 random movesfrom the respetive motion atalog (long-moves for the Ghrist model), so that theinitial Surfae on�guration di�uses into a model-spei� area of the on�gurationspae. Finally, the model-spei� on�guration reahed is used as a starting loa-tion for taking a sample. Examples of on�gurations generated by this proedureare shown in �gure 4.2.A sample sub-graph is generated by performing a breadth �rst searh to a depthof two from the sample loation (the sample loation, its neighbors, and its neigh-bor's neighbors). The algebrai onnetivity may be omputed for this sub-graph,
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Figure 5.2. The estimated densities of λ2 of the Laplaian aftersampling 100 sub-graphs from the reon�guration spaes of theGhrist model and the Surfae model.and should orrelate to the global algebrai onnetivity. This proedure was ap-plied to 100 samples for eah omplexity level under study. The smoothed resultsare shown in 5.2.For the Ghrist model, �gure 5.2 shows that as the number of units in the on-�guration inreases, so the spread of λ2 inreases, and the mean diminishes. Thissuggests that our sampled sub-graphs are inreasingly likely to ontain bottleneks.For higher numbers of sub-units this suggests that the Cheeger onstant is tendingtoward 0. For the Surfae model the reverse seems to be true. The spread of λ2is dereasing, and the mean inreasing. Bottleneks seem to be sparser as we addmore units to the Surfae on�gurations.Our interpretation for the Surfae model is that when there are very large num-bers of sub-units, the movement of a partiular sub-unit is relatively unrestrited;it is able to move anywhere on the surfae. Interation between sub-units mainlyours at the loal level, whose importane diminishes as the number of units grows.Thus loal interations that ause bottleneks beome less likely, and the mobility
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Figure 6.1. Graph minor operations, graphs to the right are mi-nors of those to the left. Red denotes an edge ontration opera-tion, and green an edge deletion.of sub-units on the perimeter inreases. For the Ghrist model, it only takes twokinks on the surfae to divide the perimeter into two lasses that units annot movebetween (see the H on�guration in �gure 6.9 in next setion). As the number ofunits grow, so the probability of two or more kinks being found somewhere on theperimeter tends toward ertainty.The impliation of �gure 5.2 is that the Surfae model has fewer bottleneksompared to the Ghrist model. The sparsity of bottleneks in the Surfae modelexplains why a greedy planning proedure, suh as the one employed in the S-to-Splanner, su�es in an inreasing proportion of ases as n grows.6. Graph Minor Sub-StrutureThe previous setion uses Spetral Graph Theory in order to explain when greedyplanning methods su�e in a reon�guration state spae. Within this next setionwe introdue the use of the Graph Minor Theory to the analysis of SRS statespaes, �rstly as a ompat, preise notation for representing that one state spaeis a onstrained version of another, and as a tool that reveals startling di�erenesbetween the easy and hard planning spaes as sub-units are added. This last pointin partiular partially explains why e�ient planning methods may only exist forsome planning state spaes.De�nition 2. A graph, H , is said to be a minor of a graph, G, denoted H ≤ Gif there exists a sequene of edge deletions, ontrations and vertex deletions tohange G into H .[5℄



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS22Figure 6.1 illustrates the basi graph minor modi�ation operations. The graphminor relation is a ompat notation for desribing when one state spae an beexeuted upon another model; for desribing when one SRS motion model is aonstrained version of another. Consider the similar sub-graph relation:De�nition 3. A graph, H , is said to be a sub-graph of a graph, G, if there existsa sequene of edge deletions and vertex deletions to hange G into H .[5℄The sub-graph relation laks edge ontrations. Now onsider the meta-modulereon�guration state spae graph ontaining k meta-modules, Mk, and the Claytron-is state spae whih ontains 12 sub-units for every meta-module, C12k (�gure 6.2).Meta-module movements are built from sequenes of underlying motion primitives,so although eah Mk vertex is present in the C12k graph, eah edge of the Mk graphrepresents a sequene of underlying C12k edges. Thus Mk is not a sub-graph of C12k,yet it is a graph minor, i.e., Mk ≤ C12k. Similarly, we an summarize all the dis-ussed HMR state spaes using graph minor nomenlature as Jk ≥ Ck ≥ Gk ≥ Sk,where Jk, Ck, Gk and Sk stand for the Chirikjian, Claytronis, Ghrist and Surfaemodel reon�guration state spaes ontaining k sub-units respetively.The minor relation is a ompat, preise notation for expressing what we meanby one state spae is a onstrained version of another. Butler et al.[2℄ present anargument that their ubi SRS model is generi beause it an be instantiated byvarious existing SRS motion atalogs. If we denote their ubi SRS reon�gurationstate spae ontaining k sub-units as Bk, the meta-modularized M-Tran state spaeas Tk, we an rewrite one of the instantiations desribed in the work as Bk ≤ T4k,as four M-Tran units were required to ooperate in order to ahieve the minimummotion requirements of their model.While the graph minor relation is a useful notation for desribing relationshipsbetween di�erent SRS motion atalogs, we now look at the family of state spaegraphs of an individual SRS atalog generated by di�erent numbers of sub-units,e.g., Sn, for n > 1; to understand how the planning problem hanges as moresub-units are added. Intuitively one might presume that the state spae graph for
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A B

...

Figure 6.2. A. A meta-module an tunnel through another, rep-resented by a single edge in the planning state spae. This sin-gle move in the meta-module state spae is implemented usinga sequene of moves from the underlying state spae. The tran-sient moves used in the Claytronis state spae have used the edgeontration operation to form atomi moves in the meta-modulestate spae (B, red). The edge ontrations, plus pruning of non-onforming meta-module states and moves (green) show that meta-modularization orresponds to a graph minor of the Claytronisstate spae.a HMR model ontaining i sub-units will share similarities with the state spaeontaining i + 1 sub-units. We address this question formally and �nd a signi�antdi�erene between the state spaes generated by models that are hard to plan for,e.g., the Ghrist atalog, and models that have e�ient solutions in existene, e.g.,the Surfae atalog or a meta-modularized state spae.For the Surfae model, the i reon�guration graph is a graph minor of the i +

1 reon�guration graph, S1 ≤ S2≤ . . .. This does not appear to be true of theon�guration graphs generated by the Ghrist motion atalog. In fat, the ounter-examples for the Ghrist ase are aused by the very ases where bottleneks arefound. Similar to the S ase, the HMR meta-modularization example is also well-ordered by the minor relation, M1 ≤ M2 ≤ . . .. As will be disussed further later,graph minor ordering in the reon�guration state spaes has signi�ant impliationsfor the motion planning problem, and is likely to be the mehanism for explainingwhy one motion model admits e�ient planning and others do not.
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Figure 6.3. To globally show Xi ≤ Xi+1 we an de�ne a loalrelationship between the graphs, and show that this relationshiploally adheres to the minor relationship. Red denotes edge on-trations, and green, edge and vertex deletions. The global minoran be proved by stithing together the loal minors.To show that a reon�guration state spae, Xi is a minor of Xi+1, we utilize thefat that eah vertex of the reon�guration graphs is labeled by the arrangement ofsub-units on a ommon embedding lattie. This labeling sheme permits a vertex,
vi of the Xi graph to be assoiated with a group of verties, v̄i+1, in the Xi+1graph that orresponds to possible loations a sub-unit an be added to the vion�guration to generate a on�guration within Xi+1. This observation impliesthat a loal area of the Xi graph has a orresponding loal area in the Xi+1 graph.To show globally that the Xi graph is a minor of the Xi+1 graph, it is su�ientto prove that: for every vertex, vi, in the Xi, that vi's loal graph neighborhoodis a minor of v̄i+1 graph neighborhood, and that these loal neighborhoods areonneted in the same topology. This is summarized diagrammatially in �gure6.3.The sketh of the proof to show that Si ≤ Si+1 is as follows. Any on�gurationadhering to the Surfae model implies that if a module an move at all, then itis free to move in a omplete loop around the exterior. The Si+1 spae ontainsone extra sub-unit. We show that the sub-unit an always move out of the way,in order to let any move that existed in the Si graph take plae. Prevention of a



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS25move in the Si state spae for the Si+1 state spae an only our if the extra sub-unit in the Si+1 state spae interferes with the loal support that determined themove's admissibility. We argue geometrially that for large on�gurations, therealways exists a potential loation for the added sub-unit that lies outside of theloal support loations of the Si move. The �nite size of the motion atalog's loalsupports, plus the total mobility of the additional sub-unit, implies that �get out ofthe way� moves always exist in the Si+1 state spae. The �get out of the way� moveedges an be ontrated to generate the Si graph, thus showing that Si ≤ Si+1.This argument does not follow for the Ghrist model beause, in general, the extrasub-unit does not always have enough freedom to �get out of the way� of the loalsupports that determined the admissibility of a move.Conretely, we introdue the notions of loal struture in a reon�guration grapharound some vertex, and an inherited loal struture whih represents the analogousloale in a reon�guration graph generated by adding a unit.De�nition 4. The loal struture for a on�guration, v, is all on�gurations reah-able by a single Surfae move (remember a move is a REMOVE followed by an ADDfrom the Surfae atalog, �gure 4.3).
De�nition 5. The inherited loal struture for a on�guration, v, is all possibleon�gurations generated by applying an ADD from the Surfae atalog to v. (Figure4.3)Lemma 6. Any two on�gurations belonging to a vertex's inherited struture havea valid move between them.Proof. This follows from Lemma 1. Thus the inherited loal struture forms alique of on�gurations onneted by moves.To show that the inherited loal struture preserves analogous moves that existedin the loal struture, we �rst show that an extra sub-unit an always be added at
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Figure 6.4. Whether or not a sub-unit exists at loation C doesnot a�et a move between A and B beause its support does notinterset A or B's. Rather than showing this in 2-dim, we projetthe support areas onto a line parallel to the widest diameter ofthe shape. Showing the supports do not interset is simpli�ed toshowing the projeted support intervals do not overlap.a loation that is far enough away from the start and end of the move so that itdoes not a�et the loal support that determined the moves admissibility (skethedin �gure 6.4). If a move is between position A to position B, we need to show that
∀A∀B∃C.(sup(A) ∩ sub(C)) ∪ (sup(B) ∩ sub(C)) = ∅. There are a variety of waysto show this, for simpliity, in the following proof we projet the support areas ontoa line parallel to the widest diameter of the on�guration. �Lemma 7. All generators of the Surfae atalog have a width of less than 5.Proof. See �gure 4.3. �Lemma 8. A onneted on�guration ontaining 631 or more sub-units has a largediameter of at least 29.Proof. The on�guration with the smallest large diameter ours when sub-unitsare arranged into a perfet hexagon. 6312 sub-units an be arranged into a large2A Hexagonal Number
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7

Figure 6.5. Lemma 9 is shown by sliding the shape shown ingreen (of width 7) toward the on�guration until it overlaps one ormore sub-units on its lower edge.hexagon of diameter 29. Moving any sub-unit, or adding more sub-units, will onlyinrease the large diameter. �Lemma 9. For a Surfae on�guration, within an olumnar interval of width 7, avalid ADD loation and its omplete support is ontained.Proof. First, a shape of width 7 is slid over empty spae toward the on�guration(�gure 6.5) until interseting a sub-unit. The lower row of hexagons omprisingof the shape will then ontain between one and seven sub-units and the remaindershall be empty (by onstrution). We will now onsider di�erent ases of how thebottom row an be oupied in order to show that regardless of how, there is alwaysa loation where an extra sub-unit an be added.A and B of �gure 6.6 re�et the ases of when the bottom row ontains only onesub-unit. In eah ase a sub-unit an be added using Surfae ADD E.1 (�gure 4.3).When two sub-units are present and adjaent, �gure 6.6 C and its generalisationsdemonstrate Surfae ADD E.2 an be used to add a sub-unit. When the two sub-units are a distane of one from eah other, ase D is relevant. Case D an only
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Figure 6.6. The major ases for onsideration of how the shapein �gure 6.5 an be oupied with sub-units. The area marked witha green perimeter labels the loation of an appliable support forsome Surfae ADD generator. The loation of where the sub-unitan be added is shown in green.our if additional sub-units are found adjaent to the empty loation (light blue),beause otherwise the on�guration would be invalid (�gure 4.4). With the impliedextra sub-units inluded, Surfae ADD E.4 (�gure 4.3) is appliable. Anotherpossibility when a pair of lower row sub-units are at a distane of one is ase E,this however, is an impossible Surfae on�guration (�gure 4.4), but regardless,an appliable ADD loation exists. When two sub-units are at a distane greaterthan two, suh as in the ase F, it is lear one sub-unit no longer beomes relevantto determining an ADD appliability. For ases with more sub-units, the abovearguments are trivial to extend (Surfae ADD E.3 is used when ase B is extendedto three sub-units). Therefore, within an interval of 7, a valid ADD loation analways be found, regardless of the spei�s of the Surfae on�guration. �
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6 5 6 5 6Figure 6.7. On a line of length 28, two intervals of width 5 an beplaed suh that an addition interval of 7 annot be plaed withoutinterseting one of them.Lemma 10. On a line of length 29 or greater, if two intervals of width 5 arepresent, then an interval of width 7 an be found whih intersets neither.Proof. The worst plaement of the intervals of width �ve are shown in �gure 6.7for a line of width 28. Clearly extending the length of line by one will permit spaefor an interval of width 7 to be inserted without overlap. �Lemma 11. For any move between loation A to loation B on a Surfae on�gura-tion ontaining 631 sub-units or greater, there exists a loation C where a sub-unitan be added, whereby the support of A and B do not interset the support of C,i.e., ∀A∀B∃C.(sup(C) ∩ sup(A)) ∪ (sup(C) ∩ sup(B)) = ∅.Proof. Projeting the supports of A and B onto a line parallel to the line de�ningthe large diameter of the 631 sub-unit sized on�guration yields two intervals ofsize 5 (by Lemma 7) on a line of length 29 (Lemma 8). An interval of width 7 shallexist on this line that does not interset either of the intervals of size 5 (Lemma 10).Somewhere within the area of the on�guration that would projet to the intervalof size 7 exists and ADD loation C (Lemma 9) whih annot interset the supportsof A or B. �Remark. This also holds for on�gurations of any size, but the only proof we areaware of involves umbersome enumeration of ases.Lemma 12. For every move A → B in a loal struture between on�gurations

v and u, there exists at least one pair of on�gurations v′ and u′ in the inheritedstruture between the same loations.Proof. A on�guration an be represented as a set of sub-unit loations. Let v =

X ∪{A} and u = X ∪{B}. We simply need to �nd an ADD loation C that an be



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS30added to v and u suh that it does not interfere with the support of A and B thatenabled the move A → B to take plae. Lemma 11 shows suh a C exists whenthere are more than 631 sub-units in the on�guration. Thus a C always existssuh that v′ = X ∪{A, C}, u′ = X ∪{B, C} and the move A→ B is still valid. �Lemma 13. The loal struture of a vertex, v, is a graph minor of its inheritedloal struture v′.Proof. Eah neighbor, ui, in the loal struture of v, represents a valid move be-tween the on�gurations v and ui. By Lemma 12 ∀ui, there exists a loation zithat permits a move between v∪{zi} and ui∪{zi}. By de�nition, the on�guration
v ∪ {zi} is in the inherited struture. By Lemma 6 there exists a move between all
v ∪ {zx} on�gurations. If all moves between v ∪ {zx} are ontrated and all edgesnot v ∪ {zi} → ui ∪{zi} in the inherited struture are deleted, the remaining edgesare the loal struture (see �gure 6.8)

�Theorem 14. The state spae of the Surfae model ontaining i sub-units is a graphminor of the reon�guration spae ontaining i + 1 units, Si ≤ Si+1 for i ≥ 631.Proof. By Lemma 13 every vertex in the i graph is a minor of the inherited graph.For a pair of on�gurations in the i graph, u = X ∪ {x}, v = X ∪ {y} with a movebetween them, x→ y, Lemma 13 states an ADD loation on eah, zuand zv existssuh that the same move an take plae in the inherited struture, X ∪ {x, zu} →

X ∪ {y, zu} and X ∪ {y, zv} → X ∪ {x, zv}. By Lemma 6, a onneting movebetween the loal minors exists between X ∪ {x, zv} and X ∪ {x, zu} and thus wean ompose all the loal minors of Lemma 13 into a graph and edge ontrating theonneting moves to produe the reon�guration graph ontaining i sub-units. �Remark 15. For an alternate viewpoint on the same result, we ould entirely skipthe omposition of loal graphs. An extra sub-unit an be added, and moved out ofthe way in order to realize all sequenes of realizable moves (Lemma 12). However,
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Figure 6.8. A loal struture (left) is a minor of the inheritedloal struture (right). The left entral vertex is surrounded byall on�gurations reahable by a move (its loal struture). Theright entral vertex ontains the inherited struture for that ver-tex (a lique), yellow denoting where an additional sub-unit hasbeen added. For every move in the loal struture (white to pur-ple), a omparable move an be found in the inherited struturewith an addition sub-unit added, denoted by the vertees joiningthe entral vertex. The red lines within the inherited strutureshows whih moves are required to move the additional sub-unitaround to �get out of the way� so that all analogous moves anexeute. Deleting all blak edges in the inherited lique followedby ontrating the red edges reprodues the loal struture.this loses sight that there is a notion of loality relating the loal struture to theinherited loal struture through the embedding spae. This beomes importantwhen we onsider the ounter example for the Ghrist model.Conjeture 16. The Ghrist reon�guration graph ontaining i units is not a graphminor of i + 1 when i is greater than some onstant.Our above onstrution of graph minor for the Surfae model does not hold forthe Ghrist on�guration graph beause an additional sub-unit in the inherited loalstrutures does not, in general, form a lique struture. Thus, while a loation mayexist for every loal move that permits the move to take plae in the inheritedstruture, there may not be onnetions between these loations. Figure 6.9 showsa ounterexample where the inherited struture is disonneted. In these ases theloal strutures are not minors of the inherited strutures, and so a global minorannot be onstruted from a omposition of loal minors.
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Figure 6.9. A ounterexample ase for the Ghrist model. Twoneighbors in the loal struture of the entral H on�guration areshown (top). The indued loal struture of the H on�gurationis divided into four onneted omponents, two liques and twounonneted verties. The loal struture annot be reonstrutedfrom edge deletions and ontrations of the inherited struture,and thus is not a graph minor.Interestingly, if the H on�guration ounterexample in �gure 6.9 is used as astarting point for a sub-graph sample for the proedure in setion 5, then theresulting sub-graph yields an λ2 of just 0.03. This lassi�es the on�guration asthe most bottleneked on�guration enountered. It appears that the areas of thereon�guration spae where the graph minor relation breaks down is also wherebottleneks appear.Theorem 17. For the meta-module state spae, M1 ≤M2≤ ....Proof. Omitted for brevity, but the proof largely follows the logi for the Surfaemodel. �Deoupling the start and end positions of moves is the primary reason whyminor ordering is found in the reon�guration graphs of the easy planning spaesstudied here. It must be noted though, that the minor ordering is a global struturalproperty of the reon�guration graphs, and not a onsequene of the representationused to desribe the motion atalogs.Graph Minor Theory is a powerful, modern mathematial tool. Many propertiesare persevered or bounded by taking minors. If a graph H ≤ G and G an bedrawn in some topologial spae without edge rossings (e.g. a planar graph, or a



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS33generalization thereof) then H an be too. H is no more omplex (in a topologialsense) than G.It may be initially di�ult for a reader unfamiliar with graph minor theory to seethe onsequenes of minor ordering. Reall the easier-to-grasp onept introdued�rst that if Hk ≤ Gk, and H and G are distint SRS motion models, then plansfor the hardware of H an be run on the hardware of G e.g. H ould be a meta-modularization of G. Generalizing this, we an now see that if Hi ≤ Hi+1 thatplans for the Hi reon�guration graph an be instantiated on the same hardware,di�ering only in that an extra sub-unit has been added (Hi+1). Thus, plans in
Hi an be reused, and augmented, to form plans in Hi+1, so planning in thesewell-ordered spaes an be ahieved in an inremental, loal and reursive manner.In ontrast, the hard planning spaes, like the Ghrist model, do not permit thise�ient strategy. As Gi is not a minor of Gi+1 this implies that both edge deletionsand additions must be used to modify Gi+1 into Gi (and in fat, vie versa). So, aplan that worked for a Gi planning task may not always operate in an analogousmanner for the Gi+1 ase, beause it may of utilized an edge in the reon�gurationgraph that no longer exists.Like the subset relation, the graph minor relation indues a partial order on aset of elements. Partial orders an be summarised graphially using a nested setnotation. The observations in this setion about how the Ghrist state spaes relateto the Surfae state spaes and between themselves using the graph minor relationare summarised in �gure 6.10. 7. DisussionSelf-reon�guring systems are a desirable future roboti tehnology. Unfortu-nately, pratial implementations of SRS tend to have awkward motion onstraintsthat make planning omputationally di�ult. To get the full bene�ts of SRSs we re-quire e�ient motion planning algorithms so that SRS deployments an reon�gureon demand in response to environmental hallenges.
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Figure 6.10. Eah Surfae state spae an be nested within thenext. While a Surfae state spae is always found within a Ghriststate spae, eah Ghrist state spae ontains an area that is notontained with its hild. It is for this reason that Ghrist problemsannot be solved e�iently over the entirety of the state spae.So far e�ient motion planning algorithms have been developed on a somewhatad ho basis, wherein researhers have looked arefully at eah instantiation ofSRS arhitetures and arefully hosen motion atalog restritions. So far, we havelaked a theoretial understanding of why some lasses of SRS are good to planwithin and some are not. Our work is an attempt to eluidate the struture ofSRS reon�guration spaes, whih ould be exploited in planning algorithms. Weapplied graph-theoreti tehniques to sample the reon�guration spae in orderto quantify the presene of bottleneks, and we identi�ed a graph property thatseparated an easy to plan with SRS model from a harder one. These are generalmethodologies with omputational impliations for a muh larger lass of SRS.Meta-modularization has been a ommon tati in the SRS ommunity for iso-lating troublesome motion onstraints within an abstration. Meta-modularizationoften involves the de�nition of a tunneling proedure that allows a peripheral meta-module to appear anywhere else on the perimeter of the on�guration. The un-onstrained movement of meta-modules around the perimeter using a tunnelingproedure is similar to the Surfae model's long-move motion primitives (though



englishA CHARACTERIZATION OF THE RECONFIGURATION SPACE OF SELF-RECONFIGURING ROBOTIC SYSTEMS35the Surfae model does not permit movements to loations on the perimeter thatause Surfae violations). Both meta-modularization and the Surfae model on�g-uration graphs are well-ordered by the graph minor relationship, whih we believegoes some way towards explaining why these approahes make planning easier. It islear that the Surfae model's motion atalog is far less restritive than the strategyo�ered by meta-modularization though. The on�gurations adhering to the Surfaemodel's onstraints oupy a muh larger volume of HMR on�gurations, and thussari�e less generality in the on�gurations that an be planned with e�iently,than an alternative meta-modularization approah would.The reason why Surfae onstraints are signi�antly less restritive is beausethey are de�ned as addition loal onstraints desribing where a sub-unit annotstop along a motion path. There is no restrition that the loal onstraints to bede�ned in global terms (e.g. at spei� points on a globally de�ned grid spaing asin meta-modularization). It seems entirely plausible that with a set of geometripath primitives (path segments and perhaps more generally branhes), and with theinsights of this paper (keeping algebrai onnetivity high, and looking for graphminor ordering), that a set of loal onstraints that onstrain an underlying modelonly a little, but simplify planning signi�antly, an be eluidated automatially.Constraining a motion model only a little implies that only a small volume of thetarget general state spae annot be represented. In previous work [12℄, we utilizedthe Surfae state spae as an e�ient basis for long range planning aross the moregeneral Claytronis motion atalog, with oasional reourse to more expensive butgeneral searh methods. Although the overall algorithm targeted the Claytronismotion atalog, by �nding a large subspae that was e�ient to work within, thesize of the `di�ult' part of the remaining spae was greatly redued. Thus, overall,the algorithm ould ahieve near linear performane, as empirially demonstratedusing a large number of randomly generated on�gurations, over a large proportionof the target state spae.
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