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Abstract— Humanoid robots are appealing due to their in-
herent dexterity. However, these potential benefits may only
be realized if the corresponding motion synthesis procedure
is suitably flexible. This paper presents a flexible trajectory
generation algorithm that utilizes a geometric representation of
humanoid skills (e.g., walking) - in the form of skill manifolds.
These manifolds are learnt from demonstration data that may
be obtained from off-line optimization algorithms (or a human
expert). We demonstrate that this model may be used to produce
approximately optimal motion plans as geodesics over the
manifold and that this allows us to effectively generalize from
a limited training set. We demonstrate the effectiveness of our
approach on a simulated 3-link planar arm, and then the more
challenging example of a physical 19-DoF humanoid robot. We
show that our algorithm produces a close approximation of the
much more computationally intensive optimization procedure
used to generate the data. This allows us to present experimental
results for fast motion planning on a realistic — variable step
length, width and height — walking task on a humanoid robot.

(a) Model (b) Robot

Fig. 1. TheKHR-1HV humanoid robot used, (a) skeleton model and (b)
physical robot.

I. INTRODUCTION

In recent years, humanoid robot platforms have been . ) . .
receiving increasing attention due to their inherent diggte €XiSting data-driven approaches to humanoid motion synthe
and great flexibility. Correspondingly, this highlightseth SIS are often I'_m'_tEd in this re_:spect - either they focus on
need for general purpose motion planners. Off the Shéﬁ)terpolat|0n W|th|r_1 narrow regions near dense demoredrat
solutions for humanoid robot behaviours are often resiict samples or learning is Posed as a problem of para_meter
to a limited motion vocabulary that does not exploit the fulfUNing of an externally imposed path planning algorithm

capacity of the system. For instance, predesigned motioH&t may not naturally exploit the underlying structure e t
in many platforms are not parameterized in a flexible wa pace of solutions. We aim to make progress in this setting,

(e.g., allowing full control over step length, width and y dev_eloping an algorithm that has bettv_ar gen_eralizati_on
height) and impose a limited discretization on the reaghabProPerties a”“! also a more natural and tighter integration
space of the robot. There is a pressing need for efficieREWeen learning and planning.
algorithms that can overcome these limitations and achieveIn this setting, one way to obtain training data could
a relatively rich set of within-skill variations in a regiisand be from demonstrated trajectories by an expert [2]. In this
practically implementable setting. Given such algorithmscase notions such as optimality are intrinsic to the expert’
one could then treat the skill as a component in a high&lemonstrations and can be based on a variety of (some-
level discrete search [1]. Standard approaches that dw alldimes unmodelled) factors [3]. In order to have a better
for such flexibility tend to be computationally expensiveunderstanding of the behaviour of the algorithm, in this
e.g., requiring high dimensional numerical optimization opaper, we utilize demonstration data that is obtained from
c-space search. We need a more efficient alternative. another Computational solution which involves numerical
In realistic domains, e.g. RoboCup, where restrictions tgptimization. These solutions are computationally exjens
variations on a skill would adversely impact higher leveRnd not feasible for online operation. However, they can
planning goals, one seeks a compact representation of thR¥vVe the same role as demonstration data. With this, we have
family of possible motions of a particular skill. This means? clear idea of the specific optimality properties of eack tas
that one would like to be able to learn and compactip€ing considered, and a measure of algorithm performance
represent the whole continuum of possible solutions for @dainst reasonable ‘ground truth’.
particular task. In a machine learning setting, where one is As known from the study of biological behaviours, natural
acquiring a skill from demonstration, this raises the neesglystems utilize synergies and coordination strategies tha
for good generalization to solutions that possibly lie beyo allow for efficient locomotion and fast planning. Biologica
the region of support of the original demonstration. Manytrategies usually have a musculoskeletal basis that &-inh



ent to the dynamics of the system, that restricts movementOn the other hand, we are interested in preserving proper-
to a subset of all possible solutions. In a robotics contexties of trajectories in the data set.So, formally our godbis
system and (possibly artificial) task constraints can séhree learn a model of the tangent space of the low-dimensional
same purpose. Robotics [4], [5] and graphics [6] reseaschemonlinear manifold, conditioned on the adjacency relatioh
have utilized this fact to devise efficient motion synthesishe high dimensional data. The learnt manifold can be used to
strategies. Some recent works [7], [8], [9] also address thcompute geodesic distances, to find projections of points on
issue by considering how task space constraints, e.g., ertdle manifold and to directly generate geodesic paths betwee
effector constraints, can be used to structure planning points.

configuration space with local Jacobian mappings. However

the low-dimensional nature of the solutions may not alwayé‘ Learning the model

be taken into account explicitly. Given that ourD-dimensional data lies on a locally smooth
The machine learning literature includes many examplegdimensional manifold inD-dimensional space, whete<
of dimensionality reduction methods used to abstract and/@), there exists a continuous bijective mappirlg that
make problem spaces manageable. For example Chalodhégfverts low dimensional points e R? from the manifold,
et al. [10] use a low-dimensional sensory-motor mapping t® pointsz € R” of the high dimensional space,
optimize demonstrated motions over the robot’s dynamics. z = M(y)
Wang et al. [11] introduced the GPDM, a Gaussian processes '
based dimensionality reduction with a dynamical model ofhe goal is to learn a mapping from a point on the manifold
the evolution of the state, that can learn models of humap its tangent basi#{(z),
kinematic trajectories. In the same spirit, Bitzer et a2][dse 9 P
a Gaussian Process-based nonlinear dimensionality ieduct H: z € RP — | —M(y)--- =—M(y)| € RP*4
technique to arrive at an underlying model of demonstrated Oy 9ya
data, while using a parameterized path generation methethere each column df/(z) is a basis vector of the tangent
over the learnt representation to generate novel movemeng¢pace of the manifold aj, i.e. the partial derivative of\1
Our goal is to learn a geometric structure, i.e., a skilwith respect toy.
manifold, that naturally and directly specifies both the low Learning a model of the mapping with some parametriza-
dimensional structure and dynamics on this subspace (whidion 6, i.e. Hy, is done as follows. Given two neighboring
in other works, one often externally and rather arbitrarilypoints on the manifoldz’ andz’ 1, the difference between
imposed).So, if one begins with a set of motion examplethese points,A’., should be a linear combination of the
from a specific class, e.g., due to a path optimization aangent vectors at that point on the manifold, scaled by an
redundancy resolution principle or even a more complednknown alignment factor. Taking&’fj to be the centered
kinodynamic constraint, then one seeks a representatain tlestimate of the directional derivative @Y and<¥ to be the
intrinsically captures both the restriction of states tma-I unknown alignment factor, we have
dimensional space and the evolution of the trajectoriekan t i i ;
space. We achieve this by representing motions in terms of Ho(z)e ~ Alj,

skill manifolds (learnt from data) where the tangent spacefat holds givere is small enough and the manifold can be
are suitably defined so that geodesics correspond exactly|gally approximated with a quadratic form. To ledfy we

the execution of the desired motion. define the error function:
[1. MANIFOLD LEARNING err(6) = min HHH(jij)eij _ Ain;’
ij .
In this section we present the nonlinear manifold learning ) jens

method that form the basis of our method. Our algorithny,pare N is the set of neighbors of?. This minimization

is a modification of Locally Smooth Manifold Learning by problem for @ is solved with a regularization term that

Dollar et al. [13], which we have adapted with robot motionsures that the's do not get too large, that the tangents

specific issues in mind. In particular we have replaceg, ot get too small and that neighboring tangent basis are
the neighborhood graph creation process with a procedutgqneqd. For a precise model of the tangent space one would
that considers task space distances as well as ensures d to compute the tangent basis for each paipiz™)
temporal neighborhood relations along the demonstratgghich can be considered as a regression over the evidence
trajectories are respected. , S (training data), and compute the alignment facteis, for all

_In the usual formulaﬂqn, mqn|f9ld learning is aimed ateighhoring points. Solving for the bases and their alignime
finding an embedding or ‘unrolling’ of a nonlinear man'f°|dsimultaneously is complex, but if either one is kept constan

onto a lower dimensional space while preserving metrigqying for the remaining variables becomes a tractablet lea
properties such as inter-point distances. Popular exasmplgquareS problem.

include MDS [14], LLE [15] and ISOMAP [16]. However, noqeling 74, is done with a linear model of radial basis

much of this work has been focused on summarization,ciions (Rsr's) with features over the evidence [14], where
visualization or analysis that explains some aspect of the

observed data. 1Where superscript and j are used for indexing.



o AR SEREL: AN points is acceptable. Since we have learnt the tangent space
S LIS RREFTERE EUARRE R A O A of the manifold we can find a minimum energy solution that
apfet et R S R = t follows the orthonormal (to the manifold) component of the

1: o <o oo : ’ .' j o i ~— ) ) .. gradient of
errpm(q) = min |Ho(g7)e7 — (¢" — )],
N s {eid} <
x . 1,JEN?
(a) Task space (b) Neighborhood graph that essentially makes thg's “stick” to the learnt manifold

by iteratively moving them to points where neighboring
(consecutive) bases are aligned. Next we apply another
gradient descent optimization by following the paralled (t
the manifold) component of

n
erriengn(a) = Y [|l¢" — qi‘1||§ ;
=2

that iteratively minimizes the length of the path without
leaving the support of the learnt manifold, while keeping
Fig. 2. Learning the optimality manifold of a 3-link arm. (a) Thianar  the endpoints fixed.

task space of the arm and subsampled points (blue) used fundeab) i

The neighborhood graph used for learning a manifold. (c) Tinmality Th? next sections present tW(.) examples O.f our meth(.)d'
manifold that we wish to learn. Light gray points are not usediéarning 1€ first example presents experiments on a simulated 3-link
but are plotted to give a better estimate of the geometry of theifold.  arm where both the manifold and the learnt model can be
Note that the manifold is not planar but twist and turns as weerdnwn visualized and are representative of the core ideas behisd t
the g3 axis. (d) The learnt tangent space model. Blue and green suaosv . .
basis vectors evaluated at points that correspond to tiginatigrid. work. F(_)r the _Second example we use a physical humanoid
robot, with which we demonstrate how our method scales to

more complex systems and more challenging tasks.

(c) Joint space (d) Tangent space

the number of basis functions,, acts as parameter that
can control the smoothness of the estimated mapping. More
nonsmooth nonlinear manifolds with abrupt changes, would Our first set of experiments were designed to elucidate the
typically require more basis functions to ensure a tighbasic concepts underlying our approach. We have chosen a
local fit, though the generalization ability may be weakened-link planar arm where we can explicitly visualize both
Optimizing the model requires alternating between the twthe configuration space and the optimization manifold. The
least squares problems described above, until a local rainirdrm is a series of three rigid links of unit length that are

has been reached. Typically more than one random restargcigupled with hinge joints, producing a redundant systerh wit
performed to avoid local minima. 3 degrees of freedom (DoFs) that is constrained to move on
a 2 dimensional plane (task space).

IIl. EXPERIMENTS ON A ROBOTIC ARM

B. Optimal geodesic paths

By approximating the tangent space of the manifold, wé- Training data
gain access to a variety of geometric operations. Central toWe start with a21 x 31 grid in task space and compute
our robotics aims is the ability to compute paths througkhe joint positions for each goal point with an iterative
configuration space that lie on the low dimensional manifoldoptimization procedure detailed below. We subsample 100
In this spirit, we now change our notation of points fram grid points to get a random permutation for learning, as in
to ¢, to denote poses a robot can achieve in a configuratidrig. 2(a).
space. The system being redundant, we first have to choose a
Formally, our goal is to find the shortest path between tweedundancy resolution strategy, which implicitly spesifiee
prespecified poseg, ¢, € R”, D being the dimensionality manifold that we will subsequently learn. Here, we choose
of the configuration space, that respects the geometry of tkee joint space configuratiow, that minimizes the distance
learnt manifold. In a robotics context, being on the mauifol to a convenience (robot default or minimum strain) pege,
essentially means that the constraints (e.g., optimalitg.\a Formally,
particular task-specific cost) inherent in the trainingadarte
respected. In practice we, discretize our path into a set of
via points,q = q1,...,q,, With the ¢; and ¢, being fixed, wheref is the forward kinematics anxlis the goal endpoint
and we follow a combination of gradient descent steps tposition on the plane.
minimize the length of the path while not leaving the support The resultingqg's trace a smooth nonlinear manifold in
of the manifold. joint space, depicted in Fig. 2(c). We note that the manifold
The initial estimate of the shortest path is computed bgloes not lie on a plane but on a convex strip that twists
interpolating betweeg; andgq,,, while following the geom- clockwise and tightens as we travel down theaxis. Also
etry of the manifold, until the distance between conseeutivdifferent redundancy resolution strategies would produce

min ||q — qc||2 , subject tof(q) —x =0,



extrapolation ability of the model by generating trajeisy
the endpoints of which lie outside the original grid. In both
cases start and endpoint positions in task space were random
while results are averaged over 10 trials for each scenario.
We create 50 optimal geodesic paths, with random start
and end points for each case, with the method detailed in
. ; s section 1I-B. Samples of such paths for both generalization
(a) Interpolation (b) Extrapolation cases are depicted in Fig. 3(a) and (b) (grid points in light
] gray for comparison).
I i e We then collect all the intermediate points and compute
the optimal solutions of their forward kinematics with the
redundancy resolution algorithm detailed in section I]la&
F s ground truth. We compute theRMSE for each trial and for
each case, between ground truth and prediction of model, for
a total of 10 trials.
The averaged errors are depicted in Fig. 3(c). Note that
the RMSEaxis is in log-scale while the difference of the two
Fig. 3. Results of the 3-link arm experiments. Novel task spegjectories  bars is of 2 orders of magnitude. To be precise the average

produced with random start and end points where (a) demeestgener- RMSE for paths generated within the region of support of
alization within the region of support of the data, while @@monstrates

generalization beyond the region of support of the trairdata. (c) RMSE the data isl.8935 x 10~* +3.6013 x 10*5(practically Zero)’

error of generated trajectories against ground truth fertéo cases. In the while beyond the support of the data the aver&)SEis
interpolation scenario the error is practically zegoalis in log-scale). (d) §.84x10~24+2.19%x 10~2. In addition computing the optimal
Absolute planning time for the two cases. Note that in therpuiation case . . ! . .

the length of the paths is consistently low. geodesic paths takes less time on average (Fig. 3(d) in both

cases).

[ Interpolation error
_,| CJExtrapolation error

—H

Extrapolation

Interpolation

o | 0

(c) Generalization errors (d) Time

different optimality manifolds. We note that, in generaiist IV. EXPERIMENTS ON A HUMANOID ROBOT

kind of information may not be explicitly known (in the case The three-link arm experiments are useful for demon-
of human demonstration) or visualizable for more complestrating the working of the manifold learning and optimal

problems. geodesic path planning algorithm. We now move to a more
complex system. In this setting, the skill manifold idea is

more intuitively understood. We use tHeHR-1HV (Fig.

The first step in data-driven learning of the desired manit(b)), a “KidSized” humanoid robdtthat stands approx-
fold is to compute the neighborhood graph of the trainingmately 35cm tall. It consists of 19 digital servo motors
data. We evaluate the task space distances to compugie brackets, in a bipedal-two-armed configuration, with a
the neighborhood graph with the constraint that the graptontrol board and a battery pack. The system is unstable as
contains a single connected component. In practice we graghe center of mass is elevated.
ually increase the neighborhood distance until all poimés a No analytical model of the dynamics of the system is
connected, as in Fig. 2(b). available to us as. Obtaining such models is labor intensive

The tangent space that we wish to learn is inherently tweloreover, even if we were to approximate such a model, it
dimensional. We learn a model 6fy with 10 RBF's and would have to account for varying model parameters, e.g. the
100 points, the blue points in Fig. 2(c). We can subsequentbhange in the servos’ behaviour as the battery gets depleted
evaluateHy at any point in our joint space. Fig. 2(d) showsor the motor temperatures vary. These effects are hard to
the tangent bases evaluated at every point of the previousigtimate, so we prefer to work directly from experimental
generated grid. Note that the basis vectors are aligned addta.
vary smoothly, i.e. we obtain a good generalization within We focus on the task of walking, with the aim of generat-
the region of support of the data. ing a motion synthesis strategy that allows for full coverag
C. Results of a reasonably Iarge interval in step Iength..We be.gi_n with a

' redundancy resolution strategy that would yield trainiaggad

For measuring the goodness of our learnt manifold, we ugghd ground truth for our subsequent comparisons.
two metrics. Central to our aims is the generalization gbili

of the model. Thus we quantitatively evaluate the error of. Training data

planned motions against the poses that the original opiimiz  \ve frame the redundancy resolution strategy as an uncon-
tion procedure would produce. We distinguish between tWerained nonlinear optimization problem. Algorithmigallve
scenarios for our motion planning. The first evaluates thgse a Quasi-Newton approach with a cubic line search pro-

model’s interpolation ability, generating trajectori¢®t in  cedure, based on the BEGS formula for iteratively updating
task space lie within the grid from which 100 points have

been sampled for learning. The second case evaluates th&ccording to the RoboCup Humanoid League size classification

B. Implementation



have been randomized within a reasonable reaching distance
Figure 4(a) and 4(b) show the task space trajectories of
each swing leg by running the datasets through the forward
kinematics (the support foot is in light gray for comparigon

B. Implementation

Compared to our previous simpler example, this is higher
dimensional space and sampling is necessarily somewhat
sparse. Of the 19 DoFs of the robot we used the 12 DoFs
of legs and hips and kept the remaining arm joints at a
. x . constant pose. Furthermore we separated each footstep to a
(c) Right neighborhood graph (d) Left neighborhood graph SWing phase and a Weight shift phase. This way we divided
the learning into two components, leg swing manifold and

Fig. 4. Task spaceepresentation of the training data through forward : ; ; ; ;
kinematics. Random start and end point leg swing trajectafehe left (a) support Welght shift manifold, as the measure of optlmallty

and right (b) legs. (c) and (d) the neighborhood graphs sult from the IS €ssentially different for each phase.
task space distances between demonstrated data (unitg.iithis provides We begin with the same neighborhood graph computation
the task-specific distance metric for the high dimensigoiak-space Note . .
that depicted here are only feet midpoint positions whiledhisets consist p_rocedure W_here we gra_dua”y |_ncrease our ne_lghborhOOd
of the joint space points that are 19-dimensional. distance until the graph is not disconnected (Fig 4(d) and
4(c)). We set the dimensionality of the manifolds to be 3,

_ _ o _ corresponding to the natural task space of the robot (see
the estimate of the Hessian of the objective (cost) functiogection V). In all learnt manifolds we used models with 20
[17]. Formally, the optimization problem is of the form  Rgr’s and 400 data points that belong to 20 random task

space trajectories as described in the previous section.

min J7(q), subject tof(q) —x =0,
q

where J is the cost functionf is the forward kinematics C- Results
andx is a goal task space position. The cost function is a The learnt manifolds are able to produce smooth walking
mixture of task constraints and Stablllty constraints. Thst trajectories that Satisfy the optimization criteria used t
function evaluates: produce the training data. Specifically, the aver&dSE
« the distance of the midpoint of the swing foot to the(degree} of the leg swing manifold for the ground truth
desired goal was as low ag).12 while the averagdRMSEof the weight
« the alignment of the swing foot with the x and y versorsshift manifold ranged on average néad6 (Fig. 5(c)). This
to keep the foot flat implies that the geometry of the step manifold is more
« the horizontal distance of the position of the pelvis tacomplex and some of its features might be smoothed over
the desired pelvic position, to manipulate the center dfy the RsF model. Nonetheless the procedure was able to
mass of the humanoid produce stable walking in the continuum of the reaching
« the alignment of the waist of the robot with the z versorspace of the robot as depicted in Fig. 5(a) and 5(b) for right
to keep the humanoid, from the hips up, in an uprighand left swings accordingly.
position One point to note is that the shape of the trajectories in
The optimization initialization pose is one where the hutask space is qualitatively different than the trainingadat
manoid stands upright with the knee joints slightly bent. This suggests that the learnt manifold indeed traces tkee tru
To generate a walking trajectory we start with the desirednderlying geometry that the optimization procedure ssulp
task space path of the swing leg and the position of the pelvig the robot’s joint space. In contrast the training data has
and discretize to 20 waypoints. The swing foot trajectoriebeen generated on a point by point basis, while the shape
are straight lines from start to goal points while the heigfht of the trajectories in the task space (sinusoid) has been
the foot is regulated with a sinusoid, scaled to a prespecifigrtificially imposed, regardless of the intrinsic struetof the
height. In practice we set the position of the pelvis to beptimality surface. The geodesic paths that are generated a
over the support foot and perform a double support weiglptimal with respect to the manifold’s geometry and tragers
shift step once the swing leg has reached the goal positidine configuration space smoothly.
Last we run the optimization procedure detailed earlied an The absolute time needed to generate an optimal geodesic
get the joint space trajectory of the leg swing and the weighttath on the pair of manifolds (swing leg and weight shift)
swift phases for each complete task space step path. from random start to random end points was approximately
The optimization results are approximately constant spedds552+0.4785 seconds (in a standard, not particularly fine-
guasi-static trajectories, in the sense that inertialctdf@are tuned, numerical implementation of the algorithm) whereas
negligible. We collected 20 full body joint space traje@sr generating a trajectory with the optimization procedurs, d
for stepping with the right leg and the same amount foscribed in section IV-A required approximatetyo minutes
stepping with the left leg. Start and goal points of everyp steon average. This issignificantdecrease in absolute planning



In both examples presented, we have chogeto have
the dimensionality of the system’s task space. The reagonin
behind this choice is that there might be configurations
that are close in joint space but far away in task space.

: Since our aim is to learn skill-specific manifolds, this seem
(a) Generated left steps (b) Generated right steps natural.We could have used afiy< D, but simpler models

° are preferred. Choosing the appropriate dimensionality fa

e [ ol oot pore under the bias-variance trade off, as discussed below.

e § We now make a few observations regarding limitations
t (hence, directions for future improvement) of the algarith

°
IS
8
——
Tim
.
5

in its current form. In this work, we do assume that the skills
may be represented by a subspace that is a single connected
[ component. This is clearly not an issue for the 3-link arm

(c) Error (d) Absolute time example. However, in general, this may well be insufficient
as the dimensionality of the system grows. The place where
this plays a role is the neighborhood graph computation
where by connecting two points that should not be connected
we would obtain a skewed model. In practice, suitably dense
sampling, or better still incremental sampling in appraf&i
regions, and a bit of algorithmic book keeping, would suffice
to ensure that this aspect of the manifold structure is ptppe
reflected.

Also, one must keep in mind that the manifold learning
step is performed with an iterative algorithm, much like
Expectation Maximization, that is randomly initializeddan
does not always guarantee a global minimum. So, learnt
models may not be unique solutions. This may call for better
model selection procedures - a topic for future development
Fig. 5. Experimental results with the humanoid robot. Randéart sind The number of RF basis in our experiments was chosen
end point trajectories for left (b) and right (b) leg swingmt have been empirically, thus is open to further improvement. A high
generated from our learnt manifold, via geodesic path opétida (units )
in cm). (c) RMSE (degree} of generated data against ground truth. (d)_nur_nber of RBF's WOU'?‘ allow the model to _capture more
absolute time needed for planning and optimization with ourheettand  intricate local geometric structure of the manifold, butuleb
the ”_On”?\?aAr)O?é;mézﬂg’é‘mmﬁg;g@ Sﬁfr;?ef%mf% é’:ﬁg”b;ﬂ?ngz glfo ;eXf impair its generalization ability. On the other hand a low
f)sne‘t:rtllgr}earnt hanifolds for rando?nized task—sypgce gosals.psmm of the number of BBF's may oversmooth the solution and lose much
robot executing the motion in Fig. 6, see also accompanyingovid of the geometric variation present in the training data.

This is a bias-variance trade-off and could be handled
with a cross-validation procedure. Such choices would need

time, which makes it possible to deploy this algorithm ino be closely related to the geometric complexity of the
realistic application scenarios (e.g. RoboCup). manifold that one would like to learn. Also the use of the

A randomized walk sequence entirely generated with owentered estimate of the directional derivatives implhest t
method is depicted in Fig. 5(e). Notice that the step lengthte expressive ability of the model would not be able to
are varying and the step points are variable as well withandle manifolds that cannot be locally approximated with
respect to ther axis. Snapshots of this walk executed bya quadratic form. In practice highly nonlinear manifoldatth
the robot are shown in Fig. 6. Also see the video clizary wildly or have sudden cutoffs may not be suitable for
accompanying this paper. learning, without additional treatment.

Finally, we assume that start and end points of each
trajectory are known. For this we have used the redundancy
We have demonstrated how a machine learning techniquesolution strategy used in generating the demonstratied da
for approximating a low-dimensional skill manifold may beThere is no implicit mapping of task space goals to config-
tightly integrated with the process of trajectory genenati uration space poses on the manifold per se, but in principle
One of the important differences between the manifoldnce the manifold is learned one can easily search for points

learning algorithm as used here, and other versions of sutthat satisfy task space goals.

algorithms coming out of domains such as vision, is that

we utilize task space metrics to shape the geodesic compu-
tations on the (configuration space) manifold, and focus on We have demonstrated how a manifold learning algorithm
preserving properties of the trajectories, and not justiatpo can capture the geometric properties of a low dimensional
set. skill manifold that underlies a high dimensional dataset.

(e) Generated random walk

V. DISCUSSION

VI. CONCLUSIONS AND FUTURE WORK



Fig. 6. Stills of the robot executing the planned motion dieggldn Fig. 5(e).

We have also shown how this model can be naturally usegh
to generate joint space trajectories, and how the generated

trajectories reflect the optimality and constraints inheia
the training data.

(5]

We started with an example of a simulated robotic arm
that is suitable for demonstrating the core concepts of our
work and then demonstrated a similar result on a mord6] A. Safonova, J. K. Hodgins, and N. S. Pollard, “Synthigjzphys-
interesting humanoid robot behaviour. We have demonstrate
how manifolds of complex numerical optimization solutions (7]
can be learnt from sparse data and how the geometric
structure generalizes within and beyond the support of thIB]
data. Finally, we have shown how such learnt manifolds ca
be used to produce novel approximately optimal solutions to
continuous path planning queries in a very efficient and fast’]

manner.

[10]

In future we aim to further extend our method for planning
in the presence of kinodynamic constraints. Also we would
like to add sensory feedback to the planning step as well as
incorporate higher order terms, e.g. velocities and acaele [11]
tions, in the state space. Our long term goal is to utilize the
manifold learning and planning method as the the core of [a2]
larger system that would be able to learn, plan and execute

motions robustly and in real time.

REFERENCES

[1] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hoagi and

T. Kanade, “Footstep planning for the honda asimo humanoid,” i

Proceedings of the IEEE International Conference on Ralso#ind
Automation April 2005.

[2] S. Schaal, A. ljspeert, and A. Billard, “Computationalpapaches to

motor learning by imitation,Philosophical Transactions: Biological

Sciencesvol. 358, no. 1431, pp. 537-547, 2003.
[3] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for contrabrin

multiple demonstrations,” inCML '08: Proceedings of the 25th

international conference on Machine learningNew York, NY, USA:
ACM, 2008, pp. 144-151.

[13]
[14]

[15]

[16]

[17]

S. Ramamoorthy and B. J. Kuipers, “Trajectory generat@rdynamic
bipedal walking through qualitative model based manifoldresy,”
IEEE International Conference on Robotics and Automati@RA),
pp. 359-366, May 2008.

P. Isto and M. Saha, “A slicing connection strategy fonsucting
prms in high-dimensional cspace&bbotics and Automation, 2006.
ICRA 2006. Proceedings 2006 IEEE International Conferemgepp.
1249-1254, May 2006.

ically realistic human motion in low-dimensional, behavipesific
spaces,’”ACM Trans. Graph.vol. 23, no. 3, pp. 514-521, 2004.

D. Berenson, S. Srinivasa, D. Ferguson, and J. Kuffridarfipulation
planning on constraint manifolds,” ilEEE International Conference
on Robotics and Automation (ICRA 'Q@Ylay 2009.

M. Stilman, “Task constrained motion planning in robotrjpspace,”
Intelligent Robots and Systems, 2007. IROS 2007. IEEE/fRREtha-
tional Conference onpp. 3074-3081, 29 2007-Nov. 2 2007.

T. Bretl, S. Lall, J.-C. Latombe, and S. Rock, “Multi-stepotion
planning for free-climbing robots,” itn WAFR 2004, pp. 1-16.

R. Chalodhorn, D. Grimes, G. Maganis, R. Rao, and M. Asada
“Learning humanoid motion dynamics through sensory-motor map-
ping in reduced dimensional spaces,” Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 |IEEE International Cemfee
on, May 2006, pp. 3693-3698.

J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian @msce
dynamical models for human motionfEEE Trans. Pattern Anal.
Mach. Intell, vol. 30, no. 2, pp. 283-298, 2008.

S. Bitzer, |. Havoutis, and S. Vijayakumar, “Synthesgsnovel move-
ments through latent space modulation of scalable contratips)’

in Lecture Notes in Computer Scienceépringer Berlin / Heidelberg,
2008, pp. 199-209.

P. Dollar, V. Rabaud, and S. Belongie, “Non-isometric manifold
learning: Analysis and an algorithm,” i€ML, June 2007.

T. Hastie, R. Tibshirani, and J. H. Friedmarhe Elements of Statis-
tical Learning Springer, August 2001.

S. T. Roweis and L. K. Saul, “Nonlinear dimensionalityuetion by
locally linear embedding.Sciencevol. 290, no. 5500, pp. 2323-2326,
Dec 2000.

J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A glajpabmetric
framework for nonlinear dimensionality reductiorgtiencevol. 290,
no. 5500, pp. 2319-2323, Dec 2000.

J. Nocedal and S. J. WrightNumerical Optimization 2nd ed.
Springer, 2006.



