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Motivation
Humanoid robots are extremely flexible and 

complex platforms. We want them to be able to 

exhibit a variety of dynamical behaviours subject 

to:
• Task constraints 

(Feasibility)

• Large disturbances 

(Reactive planning)

For this we need a flexible motion representation

that would allow us to handle the complexity of 

the environment and the inherent complexity of 

the system.
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How to represent Skills ?
• Families of paths in state space defined by 

system and task constraints. 

• Span an a priori unknown subspace of lower 

intrinsic dimensionality that we want to :
• Capture from demonstration data

• Leverage for motion planning

From Data to Manifold
Demonstration data are drawn from an underlying 

skill manifold, learned using a manifold learning 

algorithm (Locally Smooth Manifold Learning [2]) .

LSML allows for geometric operations as:

• Projection onto manifold

• Geodesic paths and distances

{Observations}

mRRT: Motion planning on manifolds

Results
Rapidly-exploring random trees [1] is one of the 

most successful sampling based motion planning 

algorithms. Part of its success can be attributed 

to the computational simplicity and fast 

explorative nature. 

• Sampling gets increasingly wasteful as the 

dimensionality of the space increases, especially when 

high-dim paths lie on a structured subspace.

• Exploration does not take into account task 

constraints or demonstrated data.

Leveraging skill-

relevant knowledge 

in the form of a 

learned manifold 

into the planning 

process [3] we:

Sampling based motion planning
• Start from three demonstrated 

trajectories for each of the three tasks 

(step forward, kick, step backward)

• 10 trials for each task/algorithm

• No analytical model of the robot 

(evaluate samples in simulation)

Generalizing to unseen trajectories:

• 57.6% less invalid samples

• 25.2% decrease in overall planning steps

• Bias exploration towards known good solutions

• Focus exploration where it really matters

Why pay the computational cost of mRRT?

• Representation that captures all feasible solutions

• Enables layered strategies

• Basis for Optimal Control over manifold

• Composition of skill-manifolds


