
Stir to Pour: Efficient Calibration
of Liquid Properties for Pouring Actions

Tatiana Lopez-Guevara1,2, Rita Pucci3, Nicholas K. Taylor2,
Michael U. Gutmann1, Subramanian Ramamoorthy1, Kartic Subr1

Abstract— Humans use simple probing actions to develop
intuition about the physical behavior of common objects. Such
intuition is particularly useful for adaptive estimation of favor-
able manipulation strategies of those objects in novel contexts.
For example, observing the effect of tilt on a transparent
bottle containing an unknown liquid provides clues on how the
liquid might be poured. It is desirable to equip general-purpose
robotic systems with this capability because it is inevitable that
they will encounter novel objects and scenarios. In this paper,
we teach a robot to use a simple, specified probing strategy –
stirring with a stick– to reduce spillage when pouring unknown
liquids. In the probing step, we continuously observe the effects
of a real robot stirring a liquid, while simultaneously tuning
the parameters to a model (simulator) until the two outputs
are in agreement. We obtain optimal simulation parameters,
characterizing the unknown liquid, via a Bayesian Optimizer
that minimizes the discrepancy between real and simulated
outcomes. Then, we optimize the pouring policy conditioning on
the optimal simulation parameters determined via stirring. We
show that using stirring as a probing strategy result in reduced
spillage for three qualitatively different liquids when executed
on a UR10 Robot, compared to probing via pouring. Finally, we
provide quantitative insights into the reason for stirring being a
suitable calibration task for pouring –a step towards automatic
discovery of probing strategies.

I. INTRODUCTION

The development of general-purpose robots that can learn to
manipulate liquids has the potential to impact multiple sectors
including engineering, medicine and the service industries.
Applying machine learning techniques to learn about unknown
fluids is challenging due to several difficulties including
sensing methods for generating data, complicated models
underpinning flow and the lack of a shape or appearance prior.
These hurdles are typically overcome in robotics applications
either by using specific parametric approximations [1], such
as assuming parabolic trajectories for pouring [2], or by using
a fluid simulator as a model [3], [4]. In this paper, we adopt
the latter approach since it is more general.

When using simulation, it is necessary to strike a compro-
mise between accurate and efficient (fast) models. For robotics
applications that reason about liquids in closed-loop, the latter
is often more important [3], [5]. However, fast models are
usually approximate and therefore introduce an additional
challenge. In addition to simulation input parameters such

1University of Edinburgh, 10 Crichton St, Edinburgh EH8 9AB.
2Heriot-Watt University, Currie, Edinburgh, EH14 4AS.
3University of Udine.
Authors emails in appearing order:
t.l.guevara@ed.ac.uk, rita.pucci@uniud.it,

n.k.taylor@hw.ac.uk, michael.gutmann@ed.ac.uk,
s.ramamoorthy@ed.ac.uk, k.subr@ed.ac.uk

S
im

R
ea

l

θ
θ

Fig. 1. Synchronized stirring actions with a UR10 Robot (Top) and NVidia
Flex simulator (Bottom). Measurements (Middle) consist of the inclination
of a stick, that can freely pivot at the gripping point, across time: y(t) (in
red) for real and ỹ(t) (in green) for sim. Discrepancy ∆θ is proportional to
the shaded area.

as the shape of the containers it is also necessary to learn
approximate fluid parameters with potentially no mapping to
real physical parameters [4]. Work in the field of intuitive
physics argue that humans use similar approximations to
perform complex tasks [6], [7], [8], [9].

The model mismatch or “reality gap” requires the estima-
tion of input simulation parameters as a precursor to any
task-specific optimisation, i.e. if the target task is to pour a
liquid optimally, the simulation parameters corresponding to
the liquid in question need to be estimated first. Then, these
parameters are used to determine the optimal actions to be
executed by the robot. Previous work in fluid manipulation
has either assumed that these input parameters are known a
priori [10], [11], [12], [13], [14] or are estimated by executing
the target task in a calibration stage [5], [4], [15]. However,
it is often an advantage to be able to assess these parameters
by performing a simpler task that does not require manual
intervention (cleaning and replenishing) and that minimize
the risk of damaging the robot.

We propose a method to estimate properties of unknown
liquids using stirring as a simple probing strategy. We evaluate
the efficacy of our probing strategy by pouring unknown
liquids. First, we observe the inclination of a stick that is used
by a real robot to stir an unknown liquid. We continuously
tune fluid simulation parameters until the inclination of the

Simulation

Real

motion
LEARNING FROM STIRRING (THIS PAPER)

discrepancy

BAYESIAN
OPTIMIZATION

MLE
iterate N

POURING (USED TO EVALUATE LEARNING)

spillage
as loss function

iterate N

transfer pouring
policy

one-shot pour

measured
spillage (%)

θ

as

inferred fluid
parametersθf BAYESIAN

OPTIMIZATIONθ

real vs sim

ap

θ

Fig. 2. This paper focuses on learning parameters of liquids by stirring. Learning parameters of liquids θ by stirring with the motion pattern as. The
discrepancy ∆θ between the real y(t) and simulated ỹ(t) time signals is obtained in real time. The efficacy of learning is evaluated by executing one-shot
pouring and measuring the percentage spillage z.

stick in the simulation matches real observations. The central
hypothesis is that these parameters will be useful to then
perform a different task –pouring– with the same unknown
fluid (Fig. 2). We show that using stirring (as opposed to
pouring) as a probing strategy results in reduced spillage for
three qualitatively different liquids when executed on a UR10
Robot. In addition to simplifying the inference of parameters,
our method also improves the efficacy of the pouring task.

II. RELATED WORK

System Identification for Fluids Dynamics: System iden-
tification comprises a set of methods to characterize a
dynamical system for control. There is a large body of
work on system identification applied to fluid dynamics [16],
[17], [18], [19], [20]. Most of these methods obtain a lower
dimensional representation of the system that is easier to
control, by assuming knowledge of the underlying model [16]
or by learning it directly from data [17], [18], [19], [20]. The
result is a reduced model that is efficient, but specific to each
system or task.

Robots interacting with fluids: A different line of work
is focused on general simulation models that can be used
across tasks, at the expense of reduced accuracy to keep
the computation tractable. For example learning a pouring
policy using approximate simulation [10], [11], [5], [4], [13],
[14], a combination of simulation and real observations [21],
or differentiable simulation [15]. All these methods require
previous knowledge about the specific simulation parameters,
which are assumed to be known [10], [11], [13], [14] or
obtained via calibration with the same pouring task [5], [4],
therefore involving human intervention.

Most of the work in this category is focused on pouring
water or liquids with similar viscosity [13] to water. To our
extent, this is the first work studying the manipulation of
liquids with a wider range of viscosity values, such as glycerin
and gel.

Estimation of physical fluid properties: There are also
methods that don’t assume any underlying model at all, and

directly estimate real-physical parameters of liquids from data
using robots. For example, to obtain the volume [22], height
of the body of liquid [23], 3D shape of the container [24] and
dynamic viscosity [25], [26], [27]. These methods exploit
special measurement equipment such as RGBD cameras,
microphones or tactile sensors for parameter estimation. In
our context, knowledge of exact physical parameters is not
useful since they do not correspond to their counterparts in
simulation, except when using a high-fidelity simulation that
involves higher computation times [12].

Contributions: The high-level contributions of this paper are
that we: (1) propose a simple, online calibration action (stir-
ring) decoupled from the target manipulation task (pouring),
(2) show adaptability of the obtained estimates for pouring.
We analyze the behaviour of the system in 3 liquids with a
wide range of viscosities (water, glycerin and gel).

III. PROBLEM DEFINITION

Let as ∈ As denote actions performed during calibration
(“stirring”). Let θ ∈ Θ define the parameters controlling the
behaviour of the liquid in the simulation-based model. Let
y(t) describe the real observed inclination of the stick while
stirring with the robot. Let ỹθ(t) be the simulated observed
inclination while stirring in the simulator with parameters θ.
We define the observed discrepancy (for stirring) over the
duration T of action as as

∆θ =

∫
T

(y(t)− ỹθ(t))2
dt. (1)

Let ap ∈ Ap be a pouring action and let z denote the
corresponding spillage (as a percentage of the poured liquid)
observed when ap is executed by the robot.

∆θ z

as θ ap

Fig. 3. Graphical model showing relationships between variables: as and ap
are stirring and pouring actions; ∆θ is the discrepancy in real and simulated
inclinations; z is the measured relative spillage; and θ is the parameter that
characterizes the shared property of the simulated liquid. By stirring, we
wish to obtain a maximum likelihood estimator for θ∗. During pouring, we
use θ∗ to determine an optimum a∗p which reduces z.

Here, we analyze the problem of inferring parameters
θ∗ ∈ Θ of the liquid, given a space of calibration (stirring)
actions As that are different from the space of goal
(pouring) actions Ap. We quantify the suitability of As
by measuring the percentage of liquid spilled z while
performing optimized one-shot pouring using a∗p ∈ Ap
obtained from θ∗ (See Fig 3).

Assumptions: We assume that the configuration of the
scene including the geometry of the containers and the initial
positions are available, or can be estimated using sensors.
Also, we rely on the robot’s estimation of its end effector
pose, to synchronise simulation with reality.

Inference: Given a specific As, say stirring using a given
motion pattern, the goal of the inference step is to estimate
the best θ∗ in simulation such that the discrepancy ∆θ∗ is
minimal. The optimization consists of k = 1 : N iterations.
At each iteration k, an action as is executed by the robot
(real) and in simulation (sim) using a hypothesized parameter
θ. The resulting discrepancy ∆k

θ , calculated using Eq. 1,
together with the parameter θ are provided to a Bayesian
Optimizer that learns a regression of ∆θ over θ using a
Gaussian Process [28]:

∆k
θ ∼ GP(µk(θ), κk(θ, θ

′
)), (2)

An approximation of the likelihood [29], [30] can be
computed using the cumulative density function (CDF) Φ of
the standard Normal distribution and a threshold ε as:

L̂N (θ) ∝ Φ

(
ε− µN (θ)

σN (θ)

)
. (3)

The goal is to determine the maximum likelihood estimator
MLE as:

θ∗ = argmax
θ∈Θ

L̂N (θ) (4)

In addition to the MLE, the likelihood function (Fig. 8-Left)
can also be used to compute samples from the posterior via a
Hamiltonian Monte Carlo technique [31], by first generating
samples from the prior distribution θ ∼ U(θmin, θmax) and
evaluating their likelihood according to Eq. 3.

Evaluation: We quantitatively evaluate the suitability of
As for the problem by measuring percentage spillage using

Algorithm 1: Inference Model (kth iter).
Input: Stirring action as
Output: Discrepancy ∆θ

1 Sample from prior θk ∼ U(θmin, θmax)
2 Get sim obs. ỹt(t) = NvFlex(as, θ

k)
3 Get real obs. y(t) = Robot(as)
4 Compute discrepancy: ∆θ using (Eq. 1)
5 Return ∆θ

an optimized action a∗p ∈ Ap. This is due to the lack of
an existing ground truth of the parameters in the simulator
given its approximate nature. Since our contribution concerns
the calibration task, we use a pouring strategy exactly as
prescribed by previous work [4]. They use a simulator to
identify a∗p, by defining the loss function to be the ratio of
the spilled particles to the total number of particles simulated.
The jth iteration of their method therefore involves executing
the simulator with action ajp ∈ As and θ∗. The minimization
results in a∗p after a finite number of iterations (15 in our
case). Finally, we execute a∗p using the robot and measure
the percentage of liquid spilled.

IV. EXPERIMENTAL SETUP

For all our experimets, we used a UR10 robot equipped
with a gripper in combination with MoveIt [32]. Simulations
were executed using NVIDIA Flex [33], running on Dell
Alienware Laptop with a NVIDIA GeForce GTX 1070
Graphics card and 8GB of RAM. We used a Kern 2.5k
weighting scale to measure the spillage when pouring. We
used two Logitech HD Pro C920 webcams to capture
orthogonal views from the stick when the robot stirs the
liquid. Each stirring iteration takes around 30 seconds and it
does not involve human intervention. Each pouring iteration
takes between 2 and 4 minutes depending on the liquid, out
of which the majority involves manual operation and cleaning.
The experiments performed in this paper (including evaluation
and comparison with prior work) consumed a total of about
40 robot hours and 30 person hours for supervision. We used
the Engine for Likelihood-Free Inference (ELFI) [34] for the
calibration process with Algorithm 1. as the model.

A. Robot Setup

Stirring: The robot’s gripper is used to hold a stick so that
it is free to pivot at the gripping point (see Fig. 1). Before
stirring begins, the stick is vertical and partly submerged in
the liquid. The motion of the end effector is limited to a
plane P parallel to the ground plane. Due to this motion, and
the the resistance encountered by the stick due to the liquid,
at any instant t, the stick might deviate from its vertical
position to y(t). The inclination is intricately dependent on
the velocity of the end effector and the physical properties
of the liquid and the stick. y(t) is estimated using a Hough
Line detector with OpenCV [35] on the video feed from 2
webcams with image planes orthogonal to P . We average the
discrepancy across views to obtain ∆θ. The stick is wrapped

θad θbu θco θst θvi θvo
0.0

2.5

5.0

S
(θ

)
star circ rand

θad θbu θco θst θvi θvo
0.0

0.3

pouring

θad

θbu

θvo

θad

θbu

θvo

By Stirring By PouringShared NvFlex Parameters

θco

θst

θvi

Stirring is a suitable task
for calibration towards pouring

S
(θ)

Fig. 4. Model sensitivity analysis for six NvFlex parameters affecting liquid behaviour in simulation for (Left) Stirring using different patterns (star,
circular, and random) and (Right) Pouring. We are interested in the shared parameter between tasks (Middle). Parameter names are abbreviated as (ad:
Adhesion, bu: Buoyancy, co: Cohesion, st: Surface Tension, vi: Viscosity, vo: Vorticity).

in bright green paper to reduce the error of the estimates of
y(t). The light levels were kept similar across experiments
to avoid issues with the detection. The position of the end
effector of the robot is queried at 30Hz and supplied to the
simulator which replicates the executed action. The inclination
produced in simulation at instant t is recorded as ỹθ(t). The
space of stirring actions As is discrete and determined by the
stirring pattern. In this work we used a continuous sequence,
As = {ais}, i = 1, · · · ,m that visually follows one of
three: 9−point star, circular or random patterns. Each action
ais corresponds to the desired position of the robot’s end
effector.

Pouring: We replicate the one-shot pouring solution from [4].
For completeness, we review their method here using our
notation. The space of pouring actions Ap is two dimensional
and continuous. The 2D space is parameterized by a constant
angular velocity and the relative distance between source and
target containers aip =

(
ωi, pi

)
. After 15 iterations of the

optimizer over ap given θ∗, the robot obtains an estimate for
the optimal pouring action a∗p, which it then executes. We
measure the percentage of liquid spilled by the robot over 5
repetitions of the above experiment.

B. Model Sensitivity

We started with the span of six input variables to the
simulator as the whole parameter space Θ ∈ R6 of liquids
that can be handled by our system. We denote each parameter
as θ ≡ (θad, θbu, θco, θst, θvi, θvo) where the six variables
are called (in NVIDIA Flex) adhesion, buoyancy, cohesion,
surface tension, viscosity and vorticity confinement (See
Table I for more detail). Despite their nomenclature, we
observed that these parameters do not behave as their physical
(real) namesakes. We believe this is caused by the approximate
nature of the simulator.

Stirring: We obtained j = 10 jittered samples within the
range of each parameter θjp ∼ U(θp,min, θp,max) uniformly
from the lower and upper bounds of the parameter values (See
Table I). Keeping all other parameters at their default values,
we recorded the inclinations ỹjp,θ(t) observed in simulation
with the parameter set to each of the jth jittered values. We
computed the sensitivity of the experiment with respect to

each parameter as the average variance of the observations
with respect to the parameter as

S(θp) ≡
1

T

∑
t

Varθp [|yp,θ(t)|] . (5)

Pouring: We performed exactly the same experiment as
above, for stirring, except that we execute the simulator with
pouring actions instead of stirring. Instead of defining the
variation with respect to the observed inclinations, in this
case, we measure the variation in the ratio of spilled particles
across multiple repetitions of pouring.

V. RESULTS AND DISCUSSION

Model Sensitivity: We first analyzed the impact of the
parameters θ on the stirring experiment (Fig. 4-Left). Then,
we analyzed their impact on pouring (Fig. 4-Right). Most
parameters show little or no variation, suggesting that their
values do not significantly impact the stirring experiment.
The three parameters that do exhibit consistent variation
across the patterns are: cohesion, surface tension and viscosity
(Fig. 4-Middle). We further found that, the sensitivity to
the surface tension parameter was caused by instabilities
(particles behaving chaotically), rather than because of the
action performed. So, we set this parameter to its default
value and only consider viscosity and cohesion Θ ∈ R2,
which significantly lowers the calibration time.

Confidence of parameter estimates from stirring: We
computed a measure of confidence of the parameter estimates
using the interquartile range (IQR) on samples from the
posterior along the dimensions of each θ. We used the
No-U-Turn Sampler algorithm [31] with 4 chains with 1k
samples each. The samples were rescaled between 0 and 1
before computing the statistics. Fig. 5 show the IQR for the
parameters (cohesion and viscosity), motion patterns (star,
circular, random) and liquids (water, glycerin, gel). Of the
three motion patterns generated, we found the star pattern to
achieve the most confidence in the inferred parameters and
therefore is the one we chose to evaluate on the pouring task.
We also report the obtained MLE estimates θ∗ across r = 5
repetitions in Table. II computed using (Eq. 4). These values

water glycerin gel
0.0

0.3

0.6

IQ
R

water glycerin gel

star circ rand

θco θvi

Fig. 5. Measure of confidence for the inferred parameters. We used the
Interquartile range (IQR) of samples drawn from the posterior along the
dimensions of each θ. Samples from the star pattern produce the lowest IQR
(highest confidence) for cohesion θco. All patterns show similar results for
viscosity θvi.

correspond to the simulation parameters that were used to
evaluate pouring in the next 2 sections. The high IQR reported
for viscosity reflects the irrelevance of such parameter for
estimation. This can also be seen in the likelihood contour
of Figure 8 and on the variable MLE estimates along such
dimension.

Calibration by stirring vs by pouring: We compared
the percentage spillage z achieved by our algorithm which
calibrates by stirring against the method proposed in [4] which
calibrates by pouring using a training cup. Although it would
seem intuitive that applying the same task to train must result
in lower spillage under test conditions, our results indicate
the contrary. Fig. 6 plots z vs N , where N is the number of
iterations of the Bayesian Optimizer (B.O.) used to estimate
θ∗. Using our stirring approach, the spillage is less than 5%
even with only 10 iterations, under half the corresponding
figure when the robot was trained with pouring. At N = 20
iterations, our approach almost achieves zeros spillage (which
is lower than learning from pouring at N = 60 iterations).
We believe the difference between pouring and stirring at 60
iterations is caused by randomness in the simulator.

10.0 20.0 60.0

Iterations

%
S

p
il

la
ge

8.9

1.4
0.2

3.4

0.1 0.5

Pouring Stirring

Fig. 6. Effect of two calibration methods in the deployment task measured
as the decrease of spillage with respect to the number of iterations.

Pouring other liquids: We observed a similar trend across
three different liquids (Fig. 7): as N is increased, the spillage
reduces. However, the degree of spillage is significantly higher
for glycerin and gel. We empirically noticed that this is due
to adhesion effects, making the liquids stick to the pouring

0 0.2

100

50

0

•

0 0.2

100

50

0
•

0 0.2

100

50

0

•

W
at

er
G

ly
ce

ri
n

G
el

θn

θ

θ

θ

Real Sim

Calib. by Stirring Pouring

z=0.1%

z=30.2%

z=19.0%

θco

θ v
i

Fig. 8. (Left) Contour plots of the likelihood of the fluid parameters after
stirring water, glycerin and gel for one of the repetitions. (Middle) Pouring
with the real robot. (Right) Synchronized pouring in simulation.

container in the real world (Fig. 7-Right). Unfortunately, the
adhesion parameter did not have any effect in simulation,
creating a strong model mismatch, both in stirring and pouring.
We believe that the choice of the approximate simulator is
the source of error during spillage1. However, the capability
to infer parameters within a limited gamut of expressibility is
still a valuable addition to the toolkits proposed by existing
methods.

10.0 20.0

Iterations

%
S

p
il

la
ge

3.4
0.1

37.2

30.2

23.1
19.0

Water Glycerin Gel

Fig. 7. Effect of the parameters inferred after performing the stirring action
10 and 20 times on three liquids.

Iterations vs repetitions in calibration: We use the term
iterations to refer to the number of steps performed by the
optimizer. At each iteration, it samples an action, executes a
simulation (yielding ỹθ(t)), executes the action on the real
robot (yielding y(t)) and uses ∆θ as the evaluation of the loss
function for that iteration. At the end of N iterations, we have
a single estimate for θ∗. Due to the stochasticity inherent to
the process, θ∗ is a single realization of the optimum inferred

1Due to the current COVID-19 situation we were unable to run additional
experiments on calibration by pouring to validate this.

0 200 400

Training Time (min)

0

4

8

%
S

p
il
la

ge

min/pour
4.0

8.0

min/stir
0.5

1.0

7.0

Fig. 9. We compared percentage spillage achieved by our method
(calibration by stirring) against calibration by pouring as a function of
the time spent in calibration. Stirring is both quicker (solid light-blue curve,
0.5 min per stir) as well as more efficient compared to learning by pouring
(solid dark-blue curve, 4min per pour). The dashed and dotted curves are
hypothetical calibration times. Another advantage of learning by stirring is
that it is completely autonomous, since no cleanup is required.

parameters. To robustify this estimate, we repeat the whole
experiment by performing N iterations again to yield another
estimate of θ∗. We then average these estimates, across
repetitions, obtain the final θ∗. So performing r repetitions
with N iterations each requires rN steps of the Bayesian
Optimizer (B.O.), and therefore rN executions of actions by
the robot. We recommend r = 5 and N = 20. Optimizing
this combination, so that more robust estimates are obtained
for equal calibration effort, is an interesting avenue for future
work.

Calibration times: Each of the rN iterations of the optimizer
in calibration requires one execution of the calibration task.
The stirring method takes about 0.5 minutes. On the other
hand, calibrating by pouring [4] takes around 4 minutes per
data sample. Even if stirring was only as efficient as pouring
in terms of the number of optimization iterations, this already
offers an eightfold saving (8×) in time during estimation.
In addition, since stirring is more efficient when smaller
number of iterations are used, the savings in calibration time
by switching from pouring to stirring is significant. This
gap is evident in the plot shown in Fig. 9 which compares
the spillage during testing resulting from the two different
calibration approaches. The solid curves represent real times
taken per calibration task for the two approaches. The dashed
curves correspond different hypothesis of doubling the time
per iteration for each stir/pour. Even if stirring took 7 mins per
stirring (which is heavily exaggerated), the spillage (dashed
red curve) is comparable to that achieved by “learning by
pouring” (solid blue curve). The plot also shows that the total
calibration time can be hundreds of minutes as opposed to
calibrating by pouring.

Simultaneously sampling As and Ap: We proposed an
algorithm that executes rN actions from As, infers θ∗ and
finally performs pouring. For one-shot pouring, the optimizer
samples M actions, executes them in simulation and uses the
ratio of spillage in simulation as the loss function to generate
an optimized action a∗p which when executed on the real

robot results in a spillage of z%. Again, since we use B.O.,
just as for calibrating, z is a single realization of a random
variable. We obtain a more robust estimate by performing
s repetitions (hence the error bars in all plots with spillage
on the Y-axis). Thus, for each pouring task on a different
liquid, the total number of actions sampled is rNsM . One
possibility would be to reallocate effort by increasing M
while setting r = 1. That is, for each repetition of pouring
we only use a single repetition of inference. This strategy
performs better overall due to the joint sampling of Asand
Ap. If calibration is being performed solely with the goal
of pouring, we recommend that an a∗p be estimated for each
repetition of inference (θ∗).

VI. CONCLUSIONS AND FUTURE WORK

We have proposed and evaluated a new calibration exper-
iment that decouples the calibration action (stirring) from
the final task (pouring) while adapting to liquids with widely
different properties. We demonstrated that stirring leads to
reduced spillage for water compared to other methods. We
presented results for calibrating and adapting the pouring
to other liquids. Calibration by stirring is preferable to
calibration by pouring because it is easy to automate, it
is time efficient and avoids the mess involved due to spillage.
To our knowledge, this is the first work studying liquids
that range from low to high viscosity. We also discussed
the several design decisions involved, along with quantitative
justification and recommendations for prospective use-cases.

Our work is limited to studying the effect of a fixed set
of stirring actions that were selected after careful analysis
in simulation. We believe an interesting avenue for future
work lies in studying how such actions can be generated
automatically using information-based metrics [36], [37], such
as maximizing the information gain after each stir. Another
interesting direction is to relax the current assumption of
knowledge about the shapes and containers and including
uncertainty in the estimation of the stick configuration.

APPENDIX

TABLE I
RANGE OF PARAMETERS ON NVFLEX USED IN EXPERIMENTS.

Parameter θ Abbrev. θmin θmax
Adhesion ad 0.0 0.1
Buoyancy bu 0.3 2.0
Cohesion co 0.0 0.2

Surface Tension st 0.0 50.0
Viscosity vi 0.0 120.0

Vorticity Confinement vo 0.0 120.0

ACKNOWLEDGMENTS

This work is supported by the Engineering and Physical
Sciences Research Council (EPSRC), as part of the CDT in
Robotics and Autonomous Systems at Heriot-Watt University
and The University of Edinburgh. The authors would also
like to thank the reviewers for their helpful comments.

TABLE II
MLE ESTIMATORS FOR EACH LIQUID, PARAMETER AND PATTERN. RANGES OF PARAMETERS IN TABLE I WERE RE-SCALED TO [0-1].

Liquid θco θvi
Star Circ Rand Star Circ Rand

water 0.03±0.07 0.00±0.00 0.07±0.14 0.54±0.35 0.80±0.41 0.46±0.29
glycerin 0.16±0.14 0.02±0.04 0.04±0.07 0.06±0.09 0.40±0.52 0.88±0.18

gel 0.65±0.16 0.84±0.15 0.64±0.34 0.36±0.27 0.51±0.48 0.75±0.28

REFERENCES

[1] M. Tamosiunaite, B. Nemec, A. Ude, and F. Wörgötter, “Learning to
pour with a robot arm combining goal and shape learning for dynamic
movement primitives,” Robotics and Autonomous Systems, vol. 59,
no. 11, pp. 910–922, 2011.

[2] Z. Pan and D. Manocha, “Motion Planning for Fluid Manipulation
using Simplified Dynamics,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), vol. 0, 2016. [Online].
Available: http://arxiv.org/abs/1603.02347

[3] C. Schenck and D. Fox, “Reasoning About Liquids via Closed-Loop
Simulation,” in Robotics: Science and Systems (RSS), 2017. [Online].
Available: http://arxiv.org/abs/1703.01656

[4] T. Lopez-Guevara, N. K. Taylor, M. U. Gutmann, S. Ramamoorthy,
and K. Subr, “Adaptable pouring: Teaching robots not to spill using
fast but approximate fluid simulation,” in 1st Annual Conference
on Robot Learning, CoRL 2017, Mountain View, California, USA,
November 13-15, 2017, Proceedings, 2017, pp. 77–86. [Online].
Available: http://proceedings.mlr.press/v78/lopez-guevara17a.html

[5] C. Schenck and D. Fox, “Visual Closed-Loop Control for Pouring
Liquids,” in International Conference on Experimental Robotics
(ICRA), 2017. [Online]. Available: http://arxiv.org/abs/1610.02610

[6] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum, “Simulation as an
engine of physical scene understanding,” Proceedings of the National
Academy of Sciences, vol. 110, no. 45, pp. 18 327–18 332, 2013.

[7] J. Wu, J. J. Lim, H. Zhang, J. B. Tenenbaum, and W. T. Freeman,
“Physics 101: Learning physical object properties from unlabeled
videos.” in BMVC, vol. 2, no. 6, 2016, p. 7.

[8] C. J. Bates, I. Yildirim, J. B. Tenenbaum, and P. Battaglia, “Modeling
human intuitions about liquid flow with particle-based simulation,”
PLoS computational biology, vol. 15, no. 7, p. e1007210, 2019.

[9] J. J. R. Van Assen, P. Barla, and R. W. Fleming, “Visual features in
the perception of liquids,” Current biology, vol. 28, no. 3, pp. 452–458,
2018.

[10] A. Yamaguchi and C. G. Atkeson, “Differential Dynamic Programming
for Graph-Structured Dynamical Systems : Generalization of Pouring
Behavior with Different Skills,” in IEEE-RAS International Conference
on Humanoid Robots, no. 2, 2016.

[11] L. Kunze and M. Beetz, “Envisioning the qualitative effects of robot
manipulation actions using simulation-based projections,” Artificial
Intelligence, jan 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0004370214001544

[12] Z. Pan and D. Manocha, “Feedback Motion Planning for Liquid Pouring
Using Supervised Learning,” IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2017.

[13] C. Do, C. Gordillo, and W. Burgard, “Learning to pour using
deep deterministic policy gradients,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 3074–3079.

[14] M. Kennedy, K. Schmeckpeper, D. Thakur, C. Jiang, V. Kumar,
and K. Daniilidis, “Autonomous precision pouring from unknown
containers,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp.
2317–2324, 2019.

[15] C. Schenck and D. Fox, “Spnets: Differentiable fluid dynamics for
deep neural networks,” in CoRL, 2018.

[16] C. W. Rowley, “Model reduction for fluids, using balanced proper
orthogonal decomposition,” International Journal of Bifurcation and
Chaos, vol. 15, no. 03, pp. 997–1013, 2005.

[17] J.-N. Juang and R. S. Pappa, “An eigensystem realization algorithm
for modal parameter identification and model reduction,” Journal of
guidance, control, and dynamics, vol. 8, no. 5, pp. 620–627, 1985.

[18] P. J. Schmid, “Dynamic mode decomposition of numerical and
experimental data,” Journal of fluid mechanics, vol. 656, pp. 5–28,
2010.

[19] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Sparse identification
of nonlinear dynamics with control (sindyc),” IFAC-PapersOnLine,
vol. 49, no. 18, pp. 710–715, 2016.

[20] ——, “Discovering governing equations from data by sparse identifi-
cation of nonlinear dynamical systems,” Proceedings of the national
academy of sciences, vol. 113, no. 15, pp. 3932–3937, 2016.

[21] A. Yamaguchi and C. G. Atkeson, “Stereo Vision of Liquid and Particle
Flow for Robot Pouring,” in IEEE-RAS International Conference on
Humanoid Robots, no. c, 2016.

[22] C. Do, T. Schubert, and W. Burgard, “A Probabilistic Approach to
Liquid Level Detection in Cups Using an RGB-D Camera,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2016.

[23] H. Liang, S. Li, X. Ma, N. Hendrich, T. Gerkmann, and J. Zhang,
“Making sense of audio vibration for liquid height estimation in robotic
pouring,” arXiv preprint arXiv:1903.00650, 2019.

[24] S. Brandi, O. Kroemer, and J. Peters, “Generalizing pouring actions
between objects using warped parameters,” in Humanoid Robots
(Humanoids), 2014 14th IEEE-RAS International Conference on. IEEE,
2014, pp. 616–621.

[25] C. Elbrechter, J. Maycock, R. Haschke, and H. Ritter, “Discriminating
liquids using a robotic kitchen assistant,” in Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE,
2015, pp. 703–708.

[26] H. Saal, J.-A. Ting, and S. Vijayakumar, “Active sequential learning
with tactile feedback,” in Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, 2010, pp. 677–684.

[27] T. Takahashi and M. C. Lin, “Video-guided real-to-virtual parameter
transfer for viscous fluids,” ACM Trans. Graph., vol. 38, pp. 237:1–
237:12, 2019.

[28] A. McHutchon and C. E. Rasmussen, “Gaussian process training with
input noise,” in Advances in Neural Information Processing Systems,
2011, pp. 1341–1349.

[29] J. Lintusaari, M. Gutmann, R. Dutta, S. Kaski, and J. Corander,
“Fundamentals and recent developments in approximate Bayesian
computation,” Systematic Biology, vol. 66, no. 1, pp. e66–e82, Jan.
2017.

[30] M. Gutmann and J. Corander, “Bayesian optimization for likelihood-
free inference of simulator-based statistical models,” Journal of Machine
Learning Research, vol. 17, no. 125, pp. 1–47, 2016.

[31] M. D. Homan and A. Gelman, “The no-u-turn sampler: Adaptively
setting path lengths in hamiltonian monte carlo,” J. Mach. Learn. Res.,
vol. 15, no. 1, p. 1593–1623, Jan. 2014.

[32] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE
Robotics & Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[33] M. Macklin and M. Müller, “Position based fluids,” ACM Transactions
on Graphics (TOG), vol. 32, no. 4, p. 104, 2013.

[34] J. Lintusaari, H. Vuollekoski, A. Kangasrääsiö, K. Skytén, M. Järvenpää,
M. Gutmann, A. Vehtari, J. Corander, and S. Kaski, “Elfi: Engine for
likelihood free inference,” 2017.

[35] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[36] S. Kleinegesse and M. U. Gutmann, “Efficient bayesian experimental
design for implicit models,” in Proceedings of Machine Learning Re-
search, ser. Proceedings of Machine Learning Research, K. Chaudhuri
and M. Sugiyama, Eds., vol. 89. PMLR, 16–18 Apr 2019, pp. 476–485.

[37] S. Kleinegesse and M. Gutmann, “Bayesian experimental design
for implicit models by mutual information neural estimation,” in
Proceedings of the 37th International Conference on Machine Learning
(ICML), 2020.

http://arxiv.org/abs/1603.02347
http://arxiv.org/abs/1703.01656
http://proceedings.mlr.press/v78/lopez-guevara17a.html
http://arxiv.org/abs/1610.02610
http://www.sciencedirect.com/science/article/pii/S0004370214001544
http://www.sciencedirect.com/science/article/pii/S0004370214001544

	INTRODUCTION
	RELATED WORK
	PROBLEM DEFINITION
	EXPERIMENTAL SETUP
	Robot Setup
	Model Sensitivity

	RESULTS AND DISCUSSION
	CONCLUSIONS AND FUTURE WORK
	References

