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ABSTRACT

We present the perceptor gradients algorithm – a novel approach to learning sym-
bolic representations based on the idea of decomposing an agent’s policy into i)
a perceptor network extracting symbols from raw observation data and ii) a task
encoding program which maps the input symbols to output actions. We show that
the proposed algorithm is able to learn representations that can be directly fed into
a Linear-Quadratic Regulator (LQR) or a general purpose A* planner. Our exper-
imental results confirm that the perceptor gradients algorithm is able to efficiently
learn transferable symbolic representations as well as generate new observations
according to a semantically meaningful specification.

1 INTRODUCTION

Learning representations that are useful for devising autonomous agent policies to act, from raw
data, remains a major challenge. Despite the long history of work in this area, fully satisfactory
solutions are yet to be found for situations where the representation is required to address symbols
whose specific meaning might be crucial for subsequent planning and control policies to be effective.
So, on the one hand, purely data-driven neural network based models, e.g., (Duan et al., 2016;
Arulkumaran et al., 2017), make significant data demands and also tend to overfit to the observed
data distribution (Srivastava et al., 2014). On the other hand, symbolic methods that offer powerful
abstraction capabilities, e.g., (Kansky et al., 2017; Verma et al., 2018), are not yet able to learn
from raw noisy data. Bridging this gap between neural and symbolic approaches is an area of active
research (Garnelo et al., 2016; Garcez et al., 2018; Kser et al., 2017; Penkov & Ramamoorthy, 2017).

In many applications of interest, the agent is able to obtain a coarse ‘sketch’ of the solution quite
independently of the detailed representations required to execute control actions. For instance, a
human user might be able to provide a programmatic task description in terms of abstract symbols
much easier than more detailed labelling of large corpora of data. In the literature, this idea is
known as end-user programming (Lieberman et al., 2006), programming by demonstration (Billard
et al., 2008) or program synthesis (Gulwani et al., 2017). In this space, we explore the specific
hypothesis that a programmatic task description provides inductive bias that enables significantly
more efficient learning of symbolic representations from raw data. The symbolic representation
carries semantic content that can be grounded to objects, relations or, in general, any pattern of
interest in the environment.

We address this problem by introducing the perceptor gradients algorithm which decomposes a typ-
ical policy, mapping from observations to actions, into i) a perceptor network that maps observations
to symbolic representations and ii) a user-provided task encoding program which is executed on the
perceived symbols in order to generate an action. We consider both feedforward and autoencoding
perceptors and view the program as a regulariser on the latent space which not only provides a strong
inductive bias structuring the latent space, but also attaches a semantic meaning to the learnt rep-
resentations. We show that the perceptor network can be trained using the REINFROCE estimator
(Williams, 1992) for any task encoding program.

We apply the perceptor gradients algorithm to the problem of balancing a cart-pole system with a
Linear-Quadratic Regulator (LQR) from pixel observations, showing that the state variables over
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which a concise control law could be defined is learned from data. Then, we demonstrate the use
of the algorithm in a navigation and search task in a Minecraft-like environment, working with a
2.5D rendering of the world, showing that symbols for use within a generic A* planner can be
learned. We demonstrate that the proposed algorithm is not only able to efficiently learn transferable
symbolic representations, but also enables the generation of new observations according to a seman-
tically meaningful specification. We examine the learnt representations and show that programmatic
regularisation is a general technique for imposing an inductive bias on the learning procedure with
capabilities beyond the statistical constraints typically used.

2 RELATED WORK

Representation learning approaches rely predominantly on imposing statistical constraints on the
latent space (Bengio et al., 2013) such as minimising predictability (Schmidhuber, 1992), maximis-
ing independence (Barlow et al., 1989; Higgins et al., 2017), minimising total correlation (Chen
et al., 2018; Kim & Mnih, 2018) or imposing structured priors on the latent space (Chen et al., 2016;
Narayanaswamy et al., 2017). While learning disentangled features is an important problem, it does
not by itself produce features of direct relevance to the planning/control task at hand. For example,
the ‘best’ features describing a dynamic system may be naturally entangled, as in a set of differential
equations. A programmatic task representation allows such dependencies to be expressed, making
subsequent learning more efficient and improving generalisation capabilities (Kansky et al., 2017;
Kusner et al., 2017; Gaunt et al., 2017; Verma et al., 2018).

Indeed, the idea of leveraging domain knowledge and imposing model driven constraints on the
latent space, has been studied in different domains. Much of this work is focused on learning rep-
resentations for predicting and controlling physical systems where various assumptions about the
underlying dynamic model are made (Watter et al., 2015; Iten et al., 2018; Fraccaro et al., 2017;
Karl et al., 2017). Bezenac et al. (2018) even leverage a theoretical fluid transport model to forecast-
ing sea surface temperature. Model based representation learning approaches have also been applied
to inverse graphics, where a visual renderer guides the learning process (Mansinghka et al., 2013;
Kulkarni et al., 2014; Ellis et al., 2018), and inverse physics, where a physics simulator is utilised
(Wu et al., 2017). Interestingly, Kulkarni et al. (2015) propose a renderer that takes a programmatic
description of the scene as input, similar to the one used in Ellis et al. (2018). Of particular rele-
vance to our work is the idea of learning compositional visual concepts by enforcing the support
of set theoretic operations such as union and intersection in the latent space (Higgins et al., 2018).
Programmatic regularisation, which we propose, can be viewed as a general tool for expressing such
model based constraints.

Programmatic task descriptions can be obtained through natural language instructions (Kaplan et al.,
2017; Matuszek et al., 2013), demonstrations in virtual environments (Penkov & Ramamoorthy,
2017) or even manually specified. Importantly, problems that appear quite hard from a pixel-level
view can actually be more easily solved by constructing simple programs which utilise symbols that
exploit the structure of the given problem. Sometimes, utilising prior knowledge in this way has
been avoided in a puristic approach to representation and policy learning. In this paper, we address
the more pragmatic view wherein the use of coarse task descriptions enables the autonomous agents
to efficiently learn more abstract representations with semantic content that are relevant to practice.

3 PROBLEM DEFINITION

Let us consider the Markov decision process (MDP) represented as the tuple (S,A, P, r, γ, P0)
where S is the set of possible states, A is the set of possible actions, P is the state transition proba-
bility distribution, r : S × A → R is the reward function, γ is the reward discounting factor and P0

is the probability distribution over the initial states. At each time step t, the agent observes a state
st ∈ S and chooses an action at ∈ Awhich results in a certain reward rt. We consider the stochastic
policy πθ(at|st) belonging to a family of functions parameterised by θ such that πθ : S → PA (A)
where PA is a probability measure over the set A.

We are interested in decomposing the policy πθ into i) a perceptor ψθ : S → PΣ(Σ), where Σ is a
set of task related symbols and PΣ is a probability measure over it, and ii) a task encoding program
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Figure 1: The proposed policy decomposition into a perceptor and a program.

ρ : Σ → A such that ρ ◦ ψθ : S → A as shown in Figure 1. In this paper, we address the problem
of learning ψθ with any program ρ and investigate the properties of the learnt set of symbols Σ.

4 METHOD

Starting from an initial state of the environment s0 ∼ P0(s) and following the policy πθ for T time
steps results in a trace τ = (s0,a0, s1,a1, . . . , sT ,aT ) of T + 1 state-action pairs and T reward
values (r1, r2, . . . , rT ) where rt = r(st,at). The standard reinforcement learning objective is to
find an optimal policy π∗θ by searching over the parameter space, such that the total expected return

J(θ) = Eτ∼p(τ ;θ) [R0(τ)] =

∫
p(τ ; θ)R0(τ) dτ (1)

is maximised, where Rt(τ) =
∑T
i=t γ

i−tr(st,at) is the return value of state st.

The REINFORCE estimator (Williams, 1992) approximates the gradient of the cost as

∇θJ(θ) ≈ 1

n

n∑
i=1

T−1∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t )
(
Rt(τ

(i))− bφ(s
(i)
t )
)

(2)

where n is the number of observed traces, bφ is a baseline function paramterised by φ introduced to
reduce the variance of the estimator.

Let us now consider the following factorisation of the policy
πθ(at|st) = p(at|σt)ψθ(σt|st) (3)

where σt ∈ Σ are the symbols extracted from the state st by the perceptor ψθ, resulting in the
augmented trace τ = (s0,σ0,a0, s1,σ1,a1, . . . , sT ,σT ,aT ). We are interested in exploiting the
programmatic structure supported by the symbols σt and so we set

p(at|σt) = δρ(σt)(at) (4)

which is a Dirac delta distribution centered on the output of the task encoding program ρ(σt) for
the input symbols σt. Even though the program should produce a single action, it could internally
work with distributions and simply sample its output. Decomposing the policy into a program and a
perceptor enables the description of programmatically structured policies, while being able to learn
the required symbolic representation from data. In order to learn the parameters of the perceptor ψθ,
we prove the following theorem.
Theorem 1 (Perceptor Gradients). For any decomposition of a policy πθ into a program ρ and a
perceptor ψθ such that

πθ(at|st) = δρ(σt)(at) ψθ(σt|st) (5)

the gradient of the log-likelihood of a trace sample τ (i) obtained by following πθ is

∇θ log p(τ (i); θ) =

T−1∑
t=0

∇θ logψθ(σ
(i)
t |s

(i)
t ) (6)
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Proof. Substituting πθ(at|st) according to (5) gives

∇θ log p(τ (i); θ) =

T−1∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t ) =

=

T−1∑
t=0

[
∇θ log δ

ρ(σ
(i)
t )

(a
(i)
t ) +∇θ logψθ(σ

(i)
t |s

(i)
t )
]

=

=

T−1∑
t=0

∇θ logψθ(σ
(i)
t |s

(i)
t ) �

Theorem 1 has an important consequence – no matter what program ρ we choose, as long as it
outputs an action in a finite amount of time, the parameters θ of the perceptor ψθ can be learnt with
the standard REINFORCE estimator.
Feedforward Perceptor By combining theorem 1 with (2), we derive the following loss function

L(θ, φ) =
1

n

n∑
i=1

{
Lψ(τ (i), θ) + Lb(τ (i), φ)

}
(7)

Lψ(τ (i), θ) =

T−1∑
t=0

logψθ(σ
(i)
t |s

(i)
t )
(
Rt(τ

(i))− bφ(s
(i)
t )
)

(8)

Lb(τ (i), φ) =

T−1∑
t=0

(
Rt(τ

(i))− bφ(s
(i)
t )
)2

(9)

and τ (i) = (s0,σ0, s1,σ1, . . . , sT ,σT ) contains T + 1 sampled state-symbol pairs. Algorithm 1
demonstrates how to rollout a policy decomposed into a perceptor and a program in order to obtain
trajectory samples τ (i), while the overall perceptor gradients learning procedure is summarised in
Algorithm 2.

Autoencoding Perceptor The perceptor is a mapping such that ψθ : S → PΣ(Σ) and so by
learning the inverse mapping ωυ : Σ → PS(S), parameterised by υ, we enable the generation of
states (observations) from a structured symbolic description. Thus ψθ and ωυ form an autoencoder,
where the latent space is Σ. Importantly, the resulting autoencoder can be trained efficiently by
applying the reparameterisation trick (Kingma & Welling, 2014; Jang et al., 2016) when sampling
values for σt during the perceptor rollout and reusing the obtained samples for the training of the
generator ωυ . In order to do so, we simply augment the loss in (7) with a reconstruction loss term

Lω(τ (i), θ) =

T−1∑
t=0

logωυ(s
(i)
t |σ

(i)
t ) (10)

5 EXPERIMENTAL RESULTS

5.1 CART-POLE BALANCING

We first consider the problem of balancing a cart-pole system by learning symbolic representations
from the raw image observations. The cart-pole system is well studied in optimal control theory
and it is typically balanced with an LQR (Zhou et al., 1996). We exploit this knowledge and set the
program ρ to implement an LQR. The perceptor ψθ is a convolutional neural network (see A.1) as
shown in the overall experiment diagram in Figure 2. We define the state vector as

σ = [x ẋ α α̇]
T (11)

where x ∈ R is the linear position of the cart and α ∈ R is the angle of the pendulum with respect
to its vertical position as shown in Figure 2.
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Figure 2: A diagram of the cart-pole experimental setup.

Algorithm 1: Perceptor rollout for a single
episode
Input: ψθ, ρ
Output: τ , r1:T

for t = 0 to T do
st ← observe environment
σt ← sample from ψθ(σ|st)
at ← ρ(σt)
rt ← execute at
append (st,σt) to τ

Algorithm 2: Perceptor gradients
(θ, φ)← Initialise parameters
repeat

for i = 1 to n do
τ (i), r

(i)
1:T ← rollout(ψθ, ρ)

for t = 0 to T do
R

(i)
t ←

∑T
i=t γ

i−tr
(i)
t

A
(i)
t ←

(
R

(i)
t − bφ(s

(i)
t )
)

Lψ ← 1
n

∑n
i=1

∑T−1
t=0 logψθ(σ

(i)
t |s

(i)
t )A

(i)
t

Lb ← 1
n

∑n
i=1

∑T−1
t=0

(
R

(i)
t − bφ(s

(i)
t )
)2

L ← Lψ + Lb
g← ∇θ, φL(θ, φ)

(θ, φ)← Update parameters using g

until convergence of parameters (θ, φ);

LQR Program Given the standard state space
representation of a cart-pole system (see A.3) we
can design a feedback control law u = −Kσ,
where u corresponds to the force applied to the
cart and K is a gain matrix. In an LQR design,
the gain matrix K is found by minimising the
quadratic cost function

J =

∫ ∞
0

σ(t)TQσ(t) + u(t)TRu(t) dt (12)

where we set Q = 103 I4 and R = 1 as pro-
posed in (Lam, 2004). We set the program ρ to
be

ρ(σ) = a =

{
1 if −Kσ > 0

0 otherwise
(13)

producing 2 discrete actions required by the
OpenAI gym cart-pole environment. We used
the python-control1 package to estimate
K = [−1 − 2.25 − 30.74 − 7.07].

5.1.1 LEARNING PERFORMANCE

In this experimental setup the perceptor is able to
learn from raw image observations the symbolic
representations required by the LQR controller.
The average reward obtained during training is
shown in Figure 3. We compare the performance
of the perceptor gradients algorithm to a stan-
dard policy gradients algorithm, where we have
replaced the program with a single linear layer
with sigmoid activation. The perceptor obtains
an average reward close to the maximum of 199 approximately after 3000 iterations compared to
7000 iterations for the standard policy, however the obtained reward has greater variance. Intuitively
this can be explained with the fact that the program encodes a significant amount of knowledge
about the task which speeds up the learning, but also defines a much more constrained manifold for
the latent space that is harder to be followed during stochastic gradient descent.

5.1.2 PERCEPTOR LATENT SPACE

The state space for which the minimum of the LQR cost in (12) is obtained is defined only up to
scale and rotation (see A.4). Therefore, we use one episode of labelled data to find the underlying
linear transformation through constrained optimisation. The transformed output of the perceptor for
an entire episode is shown in Figure 4. The position and angle representations learnt by the perceptor

1http://python-control.org
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Figure 3: Learning performance at the cart-pole balancing task of the perceptor gradients algorithm
(left) compared to standard policy gradients (right).

Figure 4: The latent space learnt by a perceptor (left) and βVAE (right). The thick coloured lines
represent the predicted mean, while the shaded regions represent ±1σ of the predicted variance.

match very closely the ground truth. However, both the linear and angular velocities do not match
the true values and the associated variance is also quite large. Investigating the results, we found out
that the LQR controller is able to balance the system even if the velocities are not taken into account.
Given that the performance of the task is not sensitive to the velocity estimates, the perceptor was
not able to ground the velocities from the symbolic state representation to the corresponding patterns
in the observed images.

We compared the representations learnt by the perceptor to the ones learnt by a βVAE (Higgins
et al., 2017). In order to do so, we generated a dataset of observations obtained by controlling the
cart-pole with the perceptor for 100 episodes. We set the βVAE encoder to be architecturally the
same as the perceptor and replaced the convolutional layers with transposed convolutions for the
decoder. We performed linear regression between the latent space of the trained βVAE and the
ground truth values. As it can be seen from the results in Figure 4 the representations learnt by the
βVAE do capture some of the symbolic state structure, however they are considerably less precise
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Figure 5: A diagram of the ’go to pose’ experimental setup.

than the ones learnt by the perceptor. The βVAE does not manage to extract the velocities either and
also collapses the distribution resulting in high certainty of the wrong estimates.

As proposed by Higgins et al. (2017), setting β > 1 encourages the βVAE to learn disentangled
representations. The results shown in Figure 4, though, were obtained with β = 0.1, otherwise the
regularisation on the latent space forcing the latent dimensions to be independent was too strong. It
has been recognised by the community that there are better ways to enforce disentanglement such as
minimising total correlation (Chen et al., 2018; Kim & Mnih, 2018). However, these methods also
rely on the independence assumption which in our case does not hold. The position and the angle
of the cart-pole system are clearly entangled and the program is able to correctly bias the learning
procedure as it captures the underlying dependencies.

5.2 MINECRAFT: GO TO POSE

Task Description We apply the perceptor gradients algorithm to the problem of navigating to a
certain pose in the environment by learning symbolic representations from images. In particular, we
consider a 5 × 5 grid world where an agent is to navigate from its location to a randomly chosen
goal pose. The agent receives +1 reward if it gets closer to the selected goal pose, +5 if it reaches
the position and +5 if it rotates to the right orientation. To encourage optimal paths, the agent also
receives -0.5 reward at every timestep. A symbolic representation of the task together with the 2.5D
rendering of the environment and the autoencoding perceptor, which we train (see A.2), are shown
in Figure 5. We express the state of the environment as

σ = [x y α]
T (14)

where x, y ∈ {1, 2, 3, 4, 5} are categorical variables representing the position of the agent in the
world and α ∈ {1, 2, 3, 4} represents its orientation.

A* Program Given that the pose of the agent σ and the goal pose G are known this problem
can be easily solved using a general purpose planner. Therefore, in this experiment the program ρ
implements a general purpose A* planner. In comparison to the simple control law program we used
in the cart-pole experiments, ρ in this case is a much more complex program as it contains several
loops, multiple conditional statements as well as a priority queue. For the experiments in this section
we directly plugged in the implementation provided by the python-astar package 2.

At every timestep, a path is found between the current σt produced by the perceptor and the goal
G randomly chosen at the beginning of the episode such that the agent either moves to one of the 4
neighbouring squares or rotates in-place at 90◦, 180◦ or 270◦. The output action at = ρ(σt) is set
to the first action in the path found by the A* planner.

5.2.1 LEARNING PERFORMANCE

In this experimental setup the perceptor is able to learn the symbolic representations required by the
A* planner from raw image observations. The average reward obtained during training is shown
in Figure 6. Again, we compare the performance of the perceptor gradients to a standard policy

2https://pypi.org/project/astar/
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Figure 6: Learning performance at the ’go to pose’ task of the perceptor gradients (left) compared
to the policy gradients (right).

Figure 7: Confusion matrices between the values predicted by the perceptor (horizontally) and the
true values (vertically) for each of the symbolic state components.

gradients algorithm, where we have replaced the program with a single linear layer with softmax
output. Additionally, we rendered an arrow in the observed images to represent the chosen goal
such that the policy network has access to this information as well. In only 2000 iterations, the
perceptor obtains an average reward close to the optimal one of approximately 11.35, while it takes
more than 30000 iterations for the policy gradients algorithm to approach an average reward of
10. Furthermore, given the highly structured nature of the environment and the task, the perceptor
gradients agent eventually learns to solve the task with much greater reliability than the pure policy
gradients one. See A.5 for experimental results on the Minecraft tasks with a feedforward perceptor
instead of an autoencoding one.

5.2.2 PERCEPTOR LATENT SPACE

In this case the latent space directly maps to the symbolic state description of the environment and so
we collected a dataset of 1000 episodes and compared the output of the perceptor to the ground truth
values. The results, summarised in the confusion matrices in Figure 7, indicate that the perceptor
has learnt to correctly ground the symbolic state description to the observed data. Despite the fact
that there are some errors, especially for the orientation, the agent still learnt to perform the task
reliably. This is the case because individual errors at a certain timestep have a limited impact on the
eventual solution of the task due to the robust nature of the abstractions supported by the symbolic
A* planner.

5.2.3 GENERATING OBSERVATIONS

Since we have trained an autoencoding perceptor we are also able to generate new observations, in
this case images of the environment. Typically, manual inspection of the latent space is needed in
order to assign each dimension to a meaningful quantity such as position or orientation. However,
this is not the case for autoencoding perceptors, as the program attaches a semantic meaning to
each of the symbols it consumes as an input. Therefore, we can generate observations according
to a semantically meaningful symbolic specification without any inspection of the latent space. In
Figure 8, we have chosen a sequence of symbolic state descriptions, forming a trajectory, that we
have passed through the decoder in order to generate the corresponding images. Given the lack of
noise in the rendering process we are able to reconstruct images from their symbolic descriptions
almost perfectly. Nevertheless, some minor orientation related artefacts can be seen in the generated
image corresponding to t = 5.
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Figure 8: Sampled images of states following a symbolically defined trajectory.

Figure 9: A diagram of the ’collect wood’ experimental setup (baseline networks not illustrated).

5.3 MINECRAFT: COLLECT WOOD

Task Description The last task we consider is navigating to and picking up an item, in particular a
block of wood, from the environment. In addition to the motion actions, the agent can now also pick
up an item if it is directly in front of it. The pick action succeeds with 50% chance, thus, introducing
stochasticity in the task. As discussed by Levesque (2005), this problem cannot be solved with a
fixed length plan and requires a loop in order to guarantee successful completion of the task. The
agent receives +5 reward whenever it picks up a block of wood. We expand the state to include the
location of the wood block resulting in

σ = [x y α xw yw]
T (15)

where xw, yw ∈ {1, 2, 3, 4, 5} are categorical variables representing the location of the block of
wood and x, y, and α are defined as before. The symbolic state representation as well as the rendered
observations are shown in Figure 9.

Stacked Perceptors In the cart-pole experiment the controller balances the system around a fixed
state, whereas in the navigation experiment the A* planner takes the agent to a randomly chosen, but
known, goal pose. Learning to recognise both the pose of the agent and the position of the item is
an ill posed problem since there is not a fixed frame of reference – the same sequence of actions can
be successfully applied to the same relative configuration of the initial state and the goal, which can
appear anywhere in the environment. We have, however, already trained a perceptor to recognise
the pose of the agent in the ’go to pose’ task and so in this experiment we demonstrate how it can
be transferred to a new task. We combine the pose perceptor from the previous experiment with
another perceptor that is to learn to recognise the position of the wood block. Given the symbolic
output of both perceptors, we can simply concatenate their outputs and feed them directly into the
A* program, as shown in Figure 9. Even though the symbols of the pose perceptor are directly
transferable to the current task, it needs to be adapted to the presence of the unseen before wooden
block. We train both perceptors jointly, but keep the learning rate for the pre-trained pose perceptor
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Figure 10: Learning performance at the ’collect wood’ task of the perceptor gradients (left) com-
pared to the policy gradients (right).

Figure 11: Sampled images from a symbolic specification over the joint latent space of the pose and
wood perceptors.

considerably lower than the one for the wood perceptor. This ensures that no catastrophic forgetting
occurs during the initial stages of training.

5.3.1 LEARNING PERFORMANCE

As shown in Figure 10 the agent is quickly able to solve the task with the stacked configuration of
perceptors. It significantly outperforms the neural network policy that is trained on the entire prob-
lem and achieves optimal performance in less than 3000 iterations. These result clearly demonstrate
that the symbolic representations learnt by a perceptor can be transferred to new tasks. Furthermore,
perceptors not only can be reused, but also adapted to the new task in a lifelong learning fashion,
which is reminiscent of the findings in (Gaunt et al., 2017) and their idea of neural libraries.

5.3.2 GENERATING OBSERVATIONS

Stacking perceptors preserves the symbolic nature of the latent space and so we are again able to
generate observations from semantically meaningful specifications. In Figure 11 we have shown a
set of generated state samples from a symbolic specification over the joint latent space. The samples
not only look realistic, but also take occlusions into account correctly (e.g. see top left sample).

6 CONCLUSION

In this paper we introduced the perceptor gradients algorithm for learning programmatically struc-
tured representations. This is achieved by combining a perceptor neural network with a task en-
coding program. Our approach achieves faster learning rates compared to methods based solely
on neural networks and yields transferable task related symbolic representations which also carry
semantic content. Our results clearly demonstrate that programmatic regularisation is a general
technique for structured representation learning.
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Figure 12: Architecture of the cart-pole feedforward perceptor ψθ and the baseline network bφ.
Convolutions are represented as #filters × filter size and all of them have a stride of 2. Linear layers
are denoted by the number of output units.

Figure 13: Architecture of the ’go-to pose’ autoencoding perceptor ψθ, the decoder ωυ and the
baseline network bφ. Convolutions are represented as #filters × filter size and all of them have a
stride of 2. Transposed convolutions (convT ) are represented in the same way. Linear layers are
denoted by the number of output units.

A SUPPLEMENTARY INFORMATION

A.1 CART-POLE FEEDFORWARD PERCEPTOR

The input of the cart-pole feedforward perceptor is a stack of 4 consecutive grayscale 32 × 128
images that we render the cart-pole system onto as shown in Figure 2. This is a setup similar to the
one proposed in (Mnih et al., 2015) which preserves temporary information in the input such that it
can be processed by a convolutional neural network. The architecture of the perceptor ψθ is shown
in Figure 12. Note that the perceptor shares its convolutional layers with the baseline network bφ.
The outputs of the perceptor are the mean and the diagonal covariance matrix of a 4-dimensional
normal distribution.

A.2 MINECRAFT ’GO-TO POSE’ AUTOENCODING PERCEPTOR

For this experiment we designed an autoencoding perceptor, the architecture of which is shown in
Figure 13. The input is a single color image containing 2.5D rendering of the world as shown in
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Figure 5. The encoder outputs the parameters of 3 categorical distributions corresponding to x, y
and α variables. These distributions are sampled to generate a latent code that is put through the
decoder. We use the Gumbel-Softmax reparameterisation of the categorical distributions (Jang et al.,
2016) such that gradients can flow from the decoder through the latent code to the encoder.

A.3 CART-POLE STATE SPACE MODEL

The state vector of the cart-pole system is

σ = [x ẋ α α̇]
T (16)

where x ∈ R is the linear position of the cart and α ∈ R is the angle of the pendulum with respect
to its vertical position as shown in Figure 2. By following the derivation in (Lam, 2004) of the
linearised state space model of the system around the unstable equilibrium [0 0 0 0]T (we ignore the
modelling of the gearbox and the motor) we set the system matrixA and input matrixB to

A =


0 1 0 0

0 0 − gml
LM−ml 0

0 0 0 1
0 0 g

L−ml/M 0

 B =


0
1

M−ml/L
0

− 1
ML−ml

 (17)

where m is the mass of the pole, M is the mass of the pole and the cart, l is half of the pendulum
length, g is the gravitational acceleration, L is set to I+ml2

ml and I = ml2

12 is the moment of inertia
of the pendulum. We use the cart-pole system from OpenAI gym where all the parameters are
pre-specified and set to m = 0.1, M = 1.0 and l = 0.5.

A.4 LQR STATE SPACE UNIQUENESS

Given thatQ is a matrix of the form λI4 where λ is a scalar, then any rotation matrixM applied on
the latent vector σ will have no impact on the cost in (12) as

(Mσ)TQMσ = σTMTλI4Mσ = σTλI4M
TMσ = σTλI4σ = σTQσ (18)

since rotation matrices are orthogonal. Additionally, scaling σ only scales the cost function and so
will not shift the locations of the optima.

A.5 MINECRAFT TASKS WITH A FEEDFORWARD PERCEPTOR

In order to study the contribution of the decoder to the performance of the agent in the Minecraft
tasks we conducted a set of ablation experiments where we replaced the autoencoding perceptor
with a feedforward one. Figure 14 and Figure 15 show the learning performance at the ’go-to pose’
and ’collect-wood’ tasks, respectively, with a feedforward perceptor. Overall, the results indicate
that the main effect of the decoder is to decrease the variance of the obtained reward during training.
The feedforward perceptor manages to ground the position of the agent slightly more accurately than
the autoencoding perceptor, however the accuracy of the orientation has decreased. The reason for
this is that orientation has little effect on the performance of the agent as it can move to any square
around it, regardless of its heading. This is similar to the cart-pole task where the linear and angular
velocities had little effect on the LQR performance.
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Figure 14: Learning performance with a feedforward perceptor at the ’go to pose’ task of the per-
ceptor gradients (left) compared to the policy gradients (right).

Figure 15: Learning performance with a feedforward perceptor at the ’collect wood’ task of the
perceptor gradients (left) compared to the policy gradients (right).

Figure 16: Confusion matrices between the values predicted by the feedforward perceptor (horizon-
tally) and the true values (vertically) for each of the symbolic state components.
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