Physical Symbol Grounding and Instance Learning
through Demonstration and Eye Tracking

Svetlin PenkoV, Alejandro Bordalld and Subramanian Ramamoorthy

Abstract—It is natural for humans to work with abstract
plans which are often an intuitive and concise way to rep-
resent a task. However, high level task descriptions contain
symbols and concepts which need to be grounded within the
environment if the plan is to be executed by an autonomous
robot. The problem of learning the mapping between abstract
plan symbols and their physical instances in the environment
is known as the problem of physical symbol grounding. In this
paper, we propose a framework for Grounding and Learning
Instances through Demonstration and Eye tracking (GLIDE).
We associate traces of task demonstration to a sequence of
xations which we call xation programs and exploit their i
properties in order to perform physical symbol grounding. We ,/77/\7
formulate the problem as a probabilistic generative model and y 3
present an algorithm for computationally feasible inference :
over the proposed model. A key aspect of our work is that
we estimate xation locations within the environment which
enables the appearance of symbol instances to be learnt.

Instance learning is a crucial ability when the robot does

not have any knowledge about the model or the appearance Fig. 1. Collaborative assembly settings demand understanding of contex-
of the symbols referred to in the plan instructions. We have tualized information within cluttered and dynamic environments in order
conducted human experiments and demonstrate that GLIDE to understand human instructions and intents. Recognising task relevant
successfully grounds plan symbols and learns the appearance objects and locations is also necessary in order to instantiate high level

of their instances, thus enabling robots to autonomously execute Plans. As we demonstrate in this paper, eye tracking information enables
tasks in initially unknown environments symbol grounding and learning the appearance of symbol instances.

I. INTRODUCTION
Despite signi cant recent advances in the autonomou%f symbol grounding [5] which is one of the core challenges

capabilities of humanoid robots, much remains to be dorl8 arti cial mtelh_ge_nce [6].
before robots are able to function effectively in complex 'Mmportantly, it is often the case that a robot may not
human environments. This is especially the case when robdtéve any knowledge about the model or the appearance
require understanding of contextualized information withirPf @ Symbol instance and so assuming a fully observable
cluttered and dynamic environments such as the collaborati¢gvironment imposes considerable constraints on the robust-
assembly setup shown in Fig. It is natural for humans ness, scalability and appllcab_|l_|ty of the e_X|st|ng methods.
to work with abstract plans for various tasks as they ardh order to rela>§ the observaplllty assumption, we introduce
often intuitive and concise. The ability to understand an@L!DE (Grounding and Learning Instances through Demon-
autonomously execute high level instructions is crucial foptration and Eye tracking) - a framework for simultaneously
the development of natural human robot interfaces (HRIfrounding symbols to their instances in the environment
However, high level instructions contain symbols and cor@nd leaming their appearance. GLIDE enables robots to
cepts which need to be interpreted and grounded within tHgstantiate a high level plan within an initially unknown
environment in order to enable plan execution. Work, ifghvironment and then complete the task autonomously.
the eld of HRI, related to interpreting abstract instructions Our framework is based on learning from a small number
(usually in the form of natural language) approaches th@f demonstrations by a person wearing eye tracking glasses.
problem as grounding the unknown references within afronsidering the exponential development of technologies
instruction to a set of prede ned actions and observed objecg/Ch as ubiquitous computing and the Internet of Things,
or locations in the environment [1], [2]. The problem ofbeing able to naturally communicate with a robot while
learning the mapping between abstract symbols and th&iearing an eye tracking device seems an extremely plausible
physical instances in the environment, also known as tH#ture. We exploit the fact that xations are highly dependent
problem of physica| Symbol groundinq3], connects the on the task and prOVide information about the location of task
idea of situated robotics [4] to the more general problerfelated items. We describe a methodology for recording 3D
xation coordinates in the environment and call the sequence
1School of Informatics, The University of Edinburgh, EH8 9AB, UK of xations during task execution axation program We



formulate the problem of mapping xation programs to highspeci ¢ and are barely affected by low level features in
level task plans as probabilistic inference and demonstratiee environment [13], [14]. This supports the active vision
how this mapping can be used to ground plan symbols an@hradigm according to which the vision system actively seeks
learn appearance distributions of symbol instances in theformation that is relevant to the current cognitive activity
environment. We recognise probabilistic programming as [d5]. For example, Land et al. conducted a study [16] in
tool well suited for the problem and so use Anglican [7which participants were asked to prepare a cup of tea in a
for the implementation. We tested GLIDE on experimentalegular kitchen environment while their eye movements were
data from human demonstrations and con rm that it successecorded. The majority of xations were on objects related
fully performs physical symbol grounding. Overall our mainto the task despite the complexity of the environment and

contributions as presented in this paper are: the free motion of the participants.
Methodology for recording 3D xations within the  Eye tracking glasses (ETG) provide xation locations as
environment based on visual SLAM. 2D points within the image from a rst person point of

An inference algorithm exploiting the properties of x- view camera mounted on the device and facing the scene.
ation programs in order to ground symbols and localisPaletta et al. demonstrated that xations can be projected
their instances in the environment. onto a precomputed 3D map, by utilising SIFT features in
An algorithm for learning the appearance of symbothe scene images [17], while Pfeiffer et al. rely on arti cial
instances when no previous knowledge is present.  ducial markers in order to estimate 3D xation locations

Il BACKGROUND [18]. Our approach utilises visual SLAM in order to reduce

; the constraints on the scene.
A. Symbol Grounding

The predominant use of eye tracking in the eld of
The problem of connecting symbols to their meaningobotics is in human-robot interaction settings, where gaze
was introduced as the “Chinese Room” experiment [8] anghformation enables the recognition of human behaviour [19]
later formally de ned as the symbol grounding problemand the execution of anticipatory actions [20]. However,
by Harnard [5]. A symbol is any object that is part of awe focus on the question of how eye tracking can guide
symbol system and symbols are arbitrary in their shapgstruction grounding and perception. In this line of thought,
A symbol system is a set of symbols and syntactic rulepapadopoulos et al. treat xations within an image as a noisy
for manipulating them on the basis of their shapes (n@Gupervisory signal for the training of visual object class

their meanings). Since robots are embedded and situatggtectors [21], however they do not reason about xations
agents, our interpretation of symbol meaning follows thguring the execution of multi-action tasks.

physical symbol groundingaradigm proposed by [3] and

is a “functional relation between a form and a referent”.

In other _vvords, _the_ meaning_of a symbo! is its relation to Ill. PROBLEM DESCRIPTION
the physical entity in the environment which the symbol is

referring to.

Previous work related to symbol grounding and robotics Initially, a task such as building the tower of cubes
focuses on human-robot interaction scenarios where natuflown in Fig.2 (right) is demonstrated by a person wearing
language is used to provide commands to the robot [1], [2fY€ tracking glasses. We make no assumptions about the
The syntactic constituents of the utterance are grounded yailability of prior knowledge related to the environment,
entities of interest in the environment - objects, locationd)owever the task to be demonstratédis predetermined.
trajectories, actions, events. Interestingly, the utterance cAslditionally, the robot has access to a dictionary with action
also be semantically parsed to a program expressed inPEMItives A which the person can execute in an arbitrary
robot control language [9] which the robot can executeSequence in order to solve the task. As illustrated in Eig.
Multimodal models fusing gestures and language have al§§ft), we represent plans for solving the task as a sequence of
been proposed [10], [11]. However, a common assumptid@ction object location) tuples whereaction is
is that all entities of interest in the environment are obSymbol corresponding to an action frof, object is a
servable. GLIDE aims to relax this constraint by enablingymbol referring to a physical object in the environment and
simultaneous grounding of the plan symbols and learning d#cation is a symbol referring to a physical location in the
the appearance of their instances. Importantly, the propos@gvironment, sometimes dependent on the previous action.
framework utilises a high level planning language, instead ¢fven thoughaction is a primitive action and known in ad-

natural language, for the representation of plans. vance, it can be executed by the robot only afterdhject
_ and location ~ symbols are grounded to their instances
B. Eye Tracking within the environment as shown in Fig.(middle). Given

Oculomotor control has been studied during the perfothat a person wears an ETG device and demonstrates how to
mance of various tasks such as sandwich making, tea makirmxecute the plan, the problem we address is how eye tracking
driving, playing table tennis, playing cricket and others (semformation can be used to ground plan symbols to their
[12] for an extensive review). The results from those studiggsstances in the environment and learn to recognise those in
show that eye movements during task execution are taskder to perform the demonstrated task autonomously.



Plan: Symbols & Tnstances: Goal:

[red cube] [ cube]

Format: ((action object Location))

({pick [blue cube] blue-location)
(place [blue cube] building-area)
(pick [red cube] red-location)
(place [red cube] atop-blue-cube)
(pick [green cube] green-location)
(place [green cube] atop-red-cube)
(pick [ cube] yellow-location)
(place [ cube] atop-green-cube)
(pick [blue cube] blue-location)
(place [blue cube] atop-yellow-cube))

[green cube] [blue cube]

Fig. 2. The representation of a pléleft) which solves an example task with the goal of building a tower with ve colour cubes in a particular order
(right) . All plan symbols need to be grounded to their physical instafeeddle) in order to enable autonomous execution of the task.

IV. METHODOLOGY the world frame and the origin of the ORBSLAM frame is

We split the problem of simultaneous symbol groundin%:o also computed during the calibration procedure. Once

and instance learning in three parts. First, we describe how {o° 6D pose of the glasses is calculated within the world

estimate 3D xation locations within the environment in or-'"a2mMe, the xation locations are projected from the rst

der to map xations to physical locations in the environmentP€rsON view camera image to the 3D environment by ray

Secondly, we show how to localise the instance of a pla%asting and nding the intersection with a 3D model of the

symbol by exploiting the properties of a xation progr‘,:Im_envwonment. As a result, xations can be represented as 3D

Lastly, once the location of an instance is known, we descridgcaﬁons in the environment instead of just pixel coordinates.

how to learn its appearance in order to enable automatwe are interested in scenarios where table top manipulation
recognition IS required, so we project xations to the plane of the table

top resulting in 2D points with physical coordinates. It is
A. 3D Eye Tracking also possible to intersect the ray with a point cloud of the

. . L ... environment [17].
Mobile eye trackers provide xation information in pixel Utilisi syl SLAM algorithm f i
coordinates corresponding to locations in the image of a 1Sing a visual mono algorithm for pose estima-

rst person view camera. Relying only on that informationt'ontr(])f the eye r;[rackmg _%Iasstes dlmposgs fewfr: C(r)]ns;ramts
requires all items of interest in the environment to be detecte?(ﬂ € scene, nhowever 1t puts demands on the hardware.

from the image in order to determine which one is xated. roughout our work we use the SMI ETG 1 device which

However, in a collaborative assembly scenario, such as tRéOV'des xations information at a rate 0Hz and the

one shown in Fig.l, there are several sensors which canrSt person view camera has a frame rateaﬁ_]:F_’S. In'.t'al

be used - the robot has an RGBD sensors, multiple came eriments reveale_d that_ this frame rate is |n_suf cient for

and laser scanners. Additionally, the environment can ald t? (?RFStLAI;/IdQIgor!thm sm;:(ta)lpe(t)plte;]mpve the|rThhead? rel-

be highly sensorised. In order to take advantage of multip%'ve y fast, agding signi cant biur to the images. 1 neretore,

sensors, instead of a single rst person view camera, e.have atFached an extra camera to the eye tracking g'lasses

estimate the 3D xation locations, enabling the projection o hich prOV|de5120:PS and enables robust head tracklng.
he transformation between the frame of the eye tracking

xations in the frame of any sensor in the environment. | d the hiah f 1 ic al timated
In order to achieve that, we calibrate the rst person viewp asses camera and the high frame rate one IS aiso estimate
during the calibration procedure.

camera and utilise the ORBSLAM algorithm [22], which is
a mono camera SLAM algorithm, in order to estimate th% Model De nition

6D pose of the eye tracking glasses in real time. Since a

single camera is used, the obtained measurements are corredh order to solve the problem of physical symbol ground-
only up to a scale factor. Therefore we have developeidg we de ne a generative probabilistic model shown in
a calibration procedure which relies on detecting severddig. 3. The task T and the xation programF,:::Ft
APRIL tags [23] initially present in the scene. First, theare observed, wherg; 2 R? and T is the total number
physical distanceal.,i, between two different view points of observed xations.P encodes any valid plan which
is estimated using the calibration parameters of the camesaccessfully completes the task. Following the idea that “task
and the tags. Then, the distarttgam is calculated from the and context determine where you look” [15], the action
estimated poses by ORBSLAM and the scale is calculatel; 2 A induces a set of xation§s, :::F; on a certain item

as dcqinb =disiam - Additionally, the transformation between of interest related to the action, whese=1 andl. = T.In



Algorithm 1: Environment Inference

|nPUt- T! A! P! m Sy Dmax
Data: F1.1
Output: E=f( 1; 1);( 25 2);::5(ms m)g

1 /I Find all possible plans for the task
2 Pr = P(T)

3 samples ]

4 for n from 1 t0 Nsamples dO

5 /I Step 1: Generate actions

P"  SampleUniformCategorical (Pt)
L"  GetLength(P")
Al .  GetActions(P")

9
Fig. 3. The proposed probabilistic model for physical symbol grounding
which is based on the idea that “task and context determine where ybu
look” [15] 11

12

/I Step 2: Generate xation program segments
n 2Ln
[sT;17;:::8;101= T SampleDir ( ")

I/l Step 3: Evaluate xation program likelihood

the context of planning, an item of interest could be any aqf wh 1:0

the symbols in the plan. For example, given the plan in Fig, fori froml1toT 1do

2 (left), an item of interest might be either a particular cubgs if BothDuringAction (Fi;Fi+1) then

or a location such as theuilding-area . The xations 16 dn JI Fi Fisl]

Fi,+1 :::Fs,, 1 areobserved during the transition from ong; w' o ow" nexp( mdm)

item of interest to another and are not represented in the if BothDuringTransition (Fi;Fi+1) then
graphical model in order to avoid clutter. Additionally, they ds  Dmax I Fi  Fisli

set of xationsFs, :::F), depends also on the actual physicajg wh oW gexp( sds)

location of the item of interest. The main assumption is

that symbol instances cannot be recognised prior to Iearniﬁé,

therefore we model the belief about the position of itenas 22 | sample f w" :[s];I7;:::s7;1]']g

a normal distributioNm ( m; m) over possible locationsin 23 | Appendsample to samples

the environment. Since xations are projected to the table top [8;1%;:::8 ;1] = WeightedAverage(samples)

plane n 2 R? and misa2 2covariance matrix. m and . / step 4: Estimate item of interest locations
m are latent variables which we are interested in inferring

in order to consequently learn the instance of synmbolThe 26 E 0

setoftuples ( ; ):i=1:::M gwhich encodes the state?? for m from1to M do

of the environment is denoted &s whereM is the number 28 ( m; m)= FitNormal (F, .n)

of items of interest, or equivalently the number of symbd® Append( m; m)toE

instances. We assume that the changes in the environment .
from stateE; to stateE;,; can be caused only by the action® out those two aspects can be performed independently as

Ai. P(FLTjALL Er) = p(FutjArL)p(FuTiEnl) (2
C. Inference By exploiting the properties of xation programs, we split
Assuming a uniform prior over the possible locations othe inference problem in 4 parts in order to obtain a compu-

each item and that a task can be uniformly chosen from a dafionally feasible solution.

of prede ned ones, we are interested in solving the following 1) Génerating actions:The termp(PjT) encodes the
inference problem probability of a plan given the demonstrated task and is

_ computed by a high level plannBr. The planner is assumed,
p(El:LJFl:)T<;T)/ by utilising the dictionary of primitive action\, to nd
/ P(F11jALL;E1L)P(ALLiP)p(PIT) the set of all plansPr that successfully achieve the task.
PA 1L sl

/I Store sample

p(PjT) is de ned as a uniform categorical distribution over
(1) Pr. By biasing the categorical distribution, it is possible to
where we use the notatiod 5., to represent the sequencerepresent any preferences with respect to a plan, for example

programs encode information about why a certain point is similar to an indicator function and assigns a probability
xated (what action is performed) and where the xationof 1 to the sequence of actions;.. which is de ned by
is located (where the action item of interest is). Reasoningan P and0 to any other sequence.



2) Generating xation program segment3he main dif-
culty in expressing the likelihood of the observed xations
given the actions as shown iR)(is the fact that there are
T xations and L actions. The xations induced by action
A; areFs, ., while the xations made during a transition
from actionA; to A; are given byF 415, 1. If there arel
actions then there ate 1 additional transitions resulting in
2L 1 sets of xations in total. Thus, the terp(F1.7jA1.L)
in (2) can be rewritten as

p(FuTjALL) = p(Fl:Il; Fi,+1:s, 13 Fsyi, i1 Fs o, JALL)

Similar to the stick breaking analogy for sampling
from a Dirichlet distribution [24], the sequence
sy;ly;so;le;iiis ;I can be viewed as points where
the xation program is split in2L 1 segments with total

length equal toT. Therefore,sy;l1;s;12;:::s.;1L, are

sgmpleq from_ 2L 1)-d|menS|onaI symmetric Dm(_:hlet Fig. 4. The experimental setup used for recording demonstrations of
distribution with concentration parameterand normalised puilding a tower with ve colour cubes. During the demonstration the person
such thats; =1 andl_ = T. Since there are no zero |engthwears eye tracking glasses which we have modi ed to enable visual mono

segments in the xation program should be greater than ~ SWAM based localisation. _ _
Empirical tests showed that setting= 2L yields a stable conducted. We perform importance sampling by using the
heuristics. It should be noted that sampling the xatiorfescribed likelihood function in order to obtain the estimates

program segments is equivalent to sampling the structure & f1; 92;_{\2; 8L fi. _ _ _
the graphical model in Fig. 4) Estimating item of interest locationsDnce the parti-

3) Evaluating xation program likelinood:Fixations on tioning of the xation program is estimated, inferring the
items of interest are clustered on the item. while xa-ocation of each item of interest is performed through max-
tions made during transition are sparse and have relativefjium likelihood estimation. For each item of intereste

large distance between each other. Therefore, the likelinodd Ni( i; i) to the xations segmenk, . corresponding
p(F11jA1L) is modelled as to the actiorA;. Due to the noisy nature of the eye tracking

signal we constrain ; to be a diagonal matrix and so

. b avoiding potential problems with over tting to the xation
p(FiTjA1L) = Litem (Fi;Fi+1)Luans (FisFiz1) (3) cluster;!. P P g

o . ) ) The pseudo code in AldL, which is optimised for clarity
The likelihood of two consecutive xations; andF; during  rather than ef ciency, summarises the proposed algorithm.
an actionA is de ned as an exponential distribution overye have implemented it with the Anglican probabilistic
the distance between thedy, = jjF;  F;jj, thus programming language [7].
Litem (FiiFj )=
mdm T = e - . .
= m € i ["J]. [Sicilid ) Once the symbol locations are estimated, the symbol
1 otherwise appearances are learnt during the instance learning stage in
which means that xations closer together are more likely%rder to enable automatic recognition. As suggested by [21],
m is the mean distance between consecutive xation durin%rounded xations can be used as a noisy supervisory signal
an action and is learnt from labelled data. The likelihood of0" @ny type of classi er. Additionally, since the estimated
two consecutive xationss; andF; during a transition from 10cations can be projected in the frame of any sensor it is

Ay to Agsr is de ned as an exponential distribution overPossible to train multimodal classi ers. We describe a simple
theds = Dmax Jj Fi Fjji, whereD gy is the maximum vision based algorithm for instance learning as an initial

D. Instance learning

possible distance betweéh andF;, and so step towards the development of more sophisticated systems.
! Given a set of xationgg, |, which correspond to an item of
L rrans (FitFj) = interest, it is projected onto the image of a camera viewing

o se % iffij]= [+ 151 1] (B) the'scene resuIFing i, . For each projecj[ed x.atior?
= ; an image crop is made centred at the xation with size
1 otherwise ; ) .
proportional to the variance dfl;. The difference between
In this case more distant xations are more likely ang every two crops is computed in order to estimate the colour
is the mean distance between consecutive xation during af the background. After that each crop is resized to enclose
transition and is also learnt from labelled ddig.,x can be the largest foreground object it contains. The resized crops
learnt from data as well, however we have set it simply to thare used to compute the distribution over the colour and
diameter of the circular table on which the experiments wergize of the symbol instance. This information is suf cient
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Fig. 5. A typical xation program recorded during a demonstration ofFig. 6. The results from running the proposed inference algorithm on

how to build a tower of 5 colour cubes in the sequence of blue, red, greetine xation program in Fig.5 in order to determine the location of each
yellow, blue (from bottom to top). symbol instance in the environment. The ellipses represent the inferred

; in oi ; ( m; m) for each item of interest. The black ellipses correspond to
to detect the object in simple environments such as the tadzl]@single standard deviation. The purple ellipse represents the location of

top setup. It should be noted that different sensors will leage building area obtained by averaging the 5 building steps. The transition
to different appearance distributions and so a more generxdtions are not explicitly visualised.

representation can be learnt by taking multiple sensors into

account.

0:15

E. Experimental setup

We have conducted human experiments where the P
robot is shown how to build a tower of ve colour cubesz
such as the one in Fig@ (right). Each of the 5 participants §
demonstrated the task 10 times, working on a table top, whig
wearing eye tracking glasses which we have modi ed as ce*
be seen in Fig4. We recorded eye tracking information as
well as video feeds from multiple cameras together with th
poses estimated by ORBSLAM. One of the cameras, whic
is xed on the ceiling, is used for estimating ground truth
locations of the cubes.

0:10 !

0:05

0:00 Lonadl s Balbosklm 1 dlnssans
00 01 0:2 03 04 05 06 07 08 09
Distance (m)
Fig. 7. A probability mass distribution over the error in localising each of
the cubes in each of the recorded demonstrations. The error is calculated as
the distance between the ground truth locations and the inferred locations
from the xation programs.

A. 3D Eye Tracking and s = 6:29cm respectively. As expected,s is an order
The rst step in the evaluation of GLIDE is to analyse theof magnitude greater than,,. This difference is crucial as
results obtained by the proposed 3D eye tracking method-provides valuable information in order to align the plan
ology. Correct pose estimation of the eye tracking glassegth the observed xation program. Furthermore, cluster
is crucial for the projection of xations on the environment,locations are not directly on the cubes, but often at the edge
therefore we have tested multiple visual SLAM algorithmsr even slightly aside. On one hand, this can be explained

on the table top setup which we are interested in. ORBSLAMy the approximation of projecting xations on the table
relies on image feature points and does not assume that thep, instead of the top side of each cube. This distortion
belong to a single plane. Thus, it is able to use featureffect can be easily noticed in the building area where each
points detected both on the table and in the environmenbnsequent cube violates the planar assumption stronger
which we found to be crucial. The only problems which wehan the previous one and the xations form a diagonal
experienced were with people leaning over the table, lookinguster. The person is usually positioned at approximately
at it from closer and so limiting the number of visible featurg0:0; 0:6) which matches the angle of the diagonal cluster.
points. However, the issue was easily resolved by tilting th&n the other hand, people are known to xate on task critical
camera up slightly and recalibrating its transformation.  locations such as grasp points [25]. Another interesting
A typical xation program recorded during a demonstra-feature is that trajectories from the rst block to the building
tion of how to build a tower of 5 colour cubes in thearea follow almost straight line paths, while the last one is
sequence of blue, red, green, yellow, blue (from bottomoticeably curved. This pattern is present in most of the
to top) is shown in Fig5. Firstly, it can be noticed that xation programs which we recorded and we attribute it
xations are indeed clustered on items of interest for eacto the fact that people change their focal plane during the
action and are sparse in the transition stages, which is a kegnsition, however we are not able to detect that and simply
assumption in the proposed inference algorithm. We used op&oject the xation onto the table top. This can be avoided
demonstration from each participant to estimate the medry monitoring the 3D optical axis of each eye and nd the
distances between xations for the two casgs = 0:81cm  intersection between them in order to truly estimate a 3D

V. RESULTS



Fig. 8. Images of symbol instances extracted by utilising the results from performing inference over the recorded xation iedgraEach of the

crops is centred at a xation belonging to the corresponding action segment. Those images are used to ground the plan symbols to their physical instances
and learn their appearan¢aiddle). The visualised instances are the mean of the learnt appearance distributions. The approach can also be used to learn
the appearance of the task gdaght) .

xation. The SMI ETG 1 device provides such informationC. Instance Learning
however we found it to be extremely noisy. Therefore, we
rely on the point of regard within the rst person view camergg
image which is less noisy, but abrupt changes with Iargl%
magnitude are often observed. One of the preprocessing st
that we employed is to remove any xations which are ou
of the table surface.

The last step in the evaluation of the proposed framework
to examine the performance of the vision based instance
arning algorithm. Given that the location of a symbol
ifStance is inferred, we can take image crops around the
orresponding xations as shown in Fig (left). Each
crop contains the item of interest being xated, however,
additional items are also partially visible due to the cluttered
table top. Nevertheless, the proposed instance learning al-
gorithm manages to Iter the extra items out and calculates
an appearance distribution over the size, colour and pixel
alues of each symbol instance. The mean value of each
ymbol instance is visualised in Fi@ (middle). Manual

B. Localisation of Symbol Instances

Next we proceed with the evaluation of the propose\é

inferencg aIgprithm. The inferrgd locations from the Xationvisual inspection of the learnt appearance models for each
program in I_Zlgi_iare_shown n F|g_6. Eacth( m: m) for ._cube throughout all demonstrations revealed thaY% of

each iterm is wsuahse_zd as an ellipse with the f:orrespondw!ghe instances were correctly learnt. Furthermore, the same
colour. The .purple e"'p?’e represents the estimated I,Ocat'%proach can be used to learn the appearance of the task goal
for the building area Wh'c.h was calculated by averaging thﬁs demonstrated in Fig.(right). There is an interesting trade
locations of the ve building steps. It can be seen that th‘E)ﬁ between the number of demonstrations, number of sen-

xation program was segmented correctly and each symb%lors and generalisation capabilities of the learnt appearance

instance was successfully localised. The building area has ois The ones shown in Fig(middle) are learnt from a
ghe grza_ltest va_nalnce \(’j\'h'Ch IS eTpecteg as thfere are 5 a}f“%ﬂ?gle static camera from a single demonstration. While they
depending on '.t' n order to eva uatg the per ormance o Mok surprisingly similar to the real cubes, they have overt
mferenge glgorlthm we haye plotted in F@theldlstnbutlon the appearance of the symbol instance and slight changes
of Iocallsatlpn error as a h|stpgram by analysmg all recordeg) the point of view or lighting conditions will render them
demonstrations. _Th_e error 1s Calculate_d independently fof, yiq. Therefore, it is an interesting problem on its own
each SUbe halnd It 1 de_ned Zsbthe d'St"’“?CG between e, to combine multiple sensors, possibly moving, with a
ground truth location estimated by a top view camera anglmher of demonstrations in order to arrive at a more general

. X , 0 . .
the inferred location from the >§at|on program73/o of a§pearance model of the given symbol instance.
the cubes are successfully localised with an error of les

than 10cr_n Whlch is comparable to the cube size ®5cm. VI. DISCUSSION

Manual inspection of erroneous cases revealed that wrong

localisation is predominantly caused by noisy eye tracking In this work we have presented how the interpretation of
data that we have not Itered out. However, since we segmehigh level instructions together with 3D eye tracking data
the xation program and the beginning and the end are xedgan actively guide perception and enable robots to instantiate
usually only a small number of item of interest locations argymbolic plans without prior knowledge about the symbol
affected by the noise. instances present in the environment. This type of situations



are inevitable if we are to deploy autonomous robots in actual
human environments so that they can improve our daily Iivesm

We have demonstrated that xation programs in the con-
text of plan execution provide not only information about
where people look at, but also why they look there. This,
property has enabled us to develop a generative probabilistic
model for xation programs together with an ef cient in-
ference algorithm. The proposed instance learning algorithm
attempts to answer the last question about what people s¢#
when they look at a particular location. Thus, GLIDE is able
to interpret unknown symbol references present in singlé4]
instructions or entire plans by mapping them to 1) a locations]
within the environment and 2) a corresponding physical
appearance. We demonstrated the capabilities of GLIDE 056]
experimental data wherg3% of the symbols were correctly
localised and the physical appearanc& ©¥ of the symbols
was successfully learnt.

One of the main limitations of the proposed inference
algorithm is that it will fail to segment the xation program (€]
properly if informative actions such as searching are executeg,
by the demonstrator. One way to resolve this issue is to add
a prior over the number of xation clusters in the xation
program. However, the planner should also be able to pred%%)]
such actions. In fact, the planner adds another constraint
which should be discussed. We assume that the planner is
able to generate all possible plans for accomplishing the ta§l1<.1]
This is possible for tasks with low branching factor where
the order is important. If we consider a task which has B2
high branching factor and the order does not matter then thgy,
number of plans grows exponentially rendering an exhaustive
search approach infeasible. A potential solution of this issU&!
is to keep a recursive estimate of the most probable plqﬁ]
currently being executed. This, however, will not work if no
knowledge about the environment is available. Therefore, it 146!
left for future work to integrate natural language instructions
in GLIDE in order to learn the symbolic plan and then[17]
instantiate it in the environment.

(7]

VII. CONCLUSION

In this paper, we introduced GLIDE - a framework for
simultaneous Grounding and Learning Instances through
Demonstration and Eye tracking. We demonstrated that it
successfully manages to ground symbols and learn their dpél
pearance by applying it to experimental data. The key insight
was the de nition of xation programs as associated tracego]
of demonstrations and xation sequences. This enabled us
to explore how eye tracking can guide the instantiatio&1
of high level plans as well as perception and environment
understanding. Those are key capabilities necessary for the
successful deployment of robots in human environments. 2]

In conclusion, GLIDE is a tool enabling robots to deal with
high level instructions without assuming any prior knowledgé?3!
about the symbol instances present in the environment.
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