
Learning in Non-Stationary MDPs as Transfer Learning

M. M. Hassan Mahmud
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB

hmahmud42@gmail.com

Subramanian Ramamoorthy
School of Informatics

University of Edinburgh
Edinburgh, EH8 9AB

s.ramamoorthy@ed.ac.uk

ABSTRACT
In this paper we present a learning algorithm for a particular sub-
class of non-stationary environments where the learner is required
to interact with other agents. The behavior-policy of the agents are
determined by a latent variable that changes rarely, but can mod-
ify the agent policies drastically when it does change (like traf-
fic conditions in a driving problem). This unpredictable change in
the latent variable results in non-stationarity. We frame this prob-
lem as a transfer learning in a particular subclass of MDPs where
each task/MDP requires the learner to learn to interact with oppo-
nent agents with fixed policies. Across the tasks, the state and ac-
tion space remains the same (and is known) but the agent-policies
change. We transfer information from previous tasks to quickly in-
fer the combined agent behavior policy in a new task after some
limited initial exploration, and hence rapidly learn an optimal/near-
optimal policy. We propose a transfer algorithm which given a col-
lection of source behavior policies, eliminates the policies that do
not apply in the new task in time polynomial in the relevant param-
eters using novel a statistical test. We also perform experiments in
three interesting domains and show that our algorithm significantly
outperforms relevant algorithms.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Intelligent Agents

General Terms
Algorithms

Keywords
Single agent Learning,Planning, Agent theories, Modeling other
agents and self, Computational architectures for learning

1. INTRODUCTION
In this paper we introduce an algorithm for learning in non-

stationary environments where the non-stationarity arise from the
actions of other agents whose behavior policy may change over
time. The behavior-policies are determined by a latent variable
which does not change often, but when it does it may drastically
alter the policies of the agents. That is, each value of the vari-
able defines a regime, and the change in value causes a change in

Technical Report: University of Edinburgh, 2013
Copyright c© 2013, the authors.

the regime. Domains that require interacting with robots or other
agents who operate in accordance with distinct behavior-profiles
are examples of tasks that fit into our formulation. For instance, in
a driving problem, the behavior-profile of other drivers will depend
on the latent variable ‘traffic conditions’. Our algorithm uses stan-
dard and novel statistical tests to quickly determine whether any
of the previous profiles are being used in the current task, and if
so uses that fact to compute an optimal policy for the new task.
We give sample complexity bounds for the algorithm to eliminate
incorrect profiles when we use our novel statistical test and then
demonstrate its efficacy in experiments.

Our approach is to model the above problem as transfer learn-
ing for reinforcement learning (TLRL) in MDPs where each MDP
represents a particular regime. In TLRL we try to use solutions of
MDPs solved at a prior point in time (the source MDPs) to solve a
new but related MDP (the target MDP) much faster (see [11],[15]
for an introduction reinforcement learning in MDPs and [16] for
a survey on TLRL). Hence, in our case we use agent behavior in
source MDPs (previous regimes) to infer their behavior in the tar-
get MDP (current regime).

We call a MDP that has this additional structure in the form of
existence of K opponent agents with fixed policies a MDP-with-
agents, (MDP-A in short form). Each MDP-A is defined like a
MDP but now the transition and reward functions are dependent on
the actions of the other agents. The policy of each opponent agent
is fully determined by the state and action of the learner, which im-
plies that the model is actually an MDP. In the transfer learning sce-
nario, all the tasks in the sequence are defined over the same state
and action space (both learner and other agent), and the only thing
that varies are the policies of the agents, which we collectively refer
to as the type of the task. We assume that these state and transition
distributions are known and the only unknowns are the types. We
derive an algorithm, which we call Type-Elimination, that based on
some initial exploration of the target task quickly determines if the
type of the target task is the same as the type of any of the source
task. If so, then the source task may be used to compute an optimal
policy for the target task and we get an optimal policy very quickly.

As a simple illustrative example, consider the following conges-
tion example that we use in our experiments later on. Due to the
plan of the city and movement of the residents of the city, the traf-
fic may follow a predictable pattern, where a certain zone free of
traffic implies that a certain other zone has a traffic jam. The type
of traffic can be modeled as the behavior-policies of other agents,
and hence the traffic pattern corresponds to a particular type. Fur-
thermore, given that one zone is free of traffic, we may predict that
a different zone has traffic, and use this information to plan more
effectively.

We have briefly introduced our model and we now proceed as

follows. In section 2, we discuss related work. Then we present
the preliminaries for this paper in Section 3. After that we intro-
duce our model and then we introduce our learning algorithm in
Section 4. After that we describe three different domains and per-
form experiments on them in Section 5. After that we end with a
conclusion in Section 6.

2. RELATED WORK
Our algorithm deals with environments that involve other agents.

Typically, Markov games are used to model problems where the
learner has to deal with other players. However, in Markov games
the other agents may change their policies within a particular task
whereas in our case the policy remains constant in a single task,
but changes across different tasks. The fact that the policy remains
fixed in a given task implies that each task in our model is indeed
an MDP (rather than a Markov game). For exactly this reason, a
MDP-A is different from I-POMDPs and other extension of MDPs
that allow presence of other agents. While our problem can be
posed in framework of the above models, which are more general
and allow for intricate strategic interaction, we do not use them be-
cause learning (and even planning) in these models can be hard to
intractable. An MDP, on the other hand, is polynomially (approx-
imately) learnable [7], and is adequate for capturing the type of
strategic interaction that we wish to address.

As mentioned above, we use the transfer learning formulation
to address learning in a non-stationary environment. Unsurpris-
ingly, it is also possible to frame the above problem as reinforce-
ment learning in a particular type of non-stationary MDPs [10], [9],
[18]. A non-stationary MDP is one where the transtion and reward
function may change with time. Hence in our case, we can view
the sequence of MDP-As as a single MDP where the reward and
transition function change as the MDP-A changes. The previous
methods for non-stationary MDPs do not quite apply in our set-
ting. The papers [10] and [9] consider, respectively, planning and
learning when the state and reward distribution changes are a-priori
bounded, whereas in our case we make no such assumption.

The paper [18] on the other hand does assume that the reward
changes arbitrarily but the state function changes remain within
some bound (both change possibly adversarially and at every step).
In this setting, the authors design their algorithms to not do much
worse than the best policy in hindsight for all the previous tasks.
This criteria is not appropriate for our case because we want the
best policy for the current task we are solving. If the previous tasks
are useful for this purpose, we would like to take advantage of it,
but if not, we still want to be optimal in the current task. Corre-
spondingly, the two algorithms, ORDP and Q-FPL and not appror-
piate for our setting, and in fact will fare poorly against algorithms
considered in this paper (and of course, such a comparison would
be unfair because they were designed for completely adversarial
problems).

More related is the paper by [3] who consider MDPS with finite
number of hidden ’modes’ that modify the MDP parameters. They
pose this problem as a POMDP and learn to solve it. While these
modes are identical to our notion of regimes, we do not assume
that the number of regimes is bounded. Furthermore, our solution
method is within the framework of MDPs, thus endowing us the
efficiency of learning algorithms in these models. Another work in
a similar vein is [13]. However, this paper considers slow, gradual
changes in parameters rather than the infrequent but drastic change
that we are interested in.

It is interesting to contrast our general approach to handling mul-
tiple agents and non-stationarity in MDPs, both very difficult prob-
lems, with those of the models and algorithms discussed above.

Instead of looking at general models that capture many possible
agent interactions, or deriving universal algorithms that work ev-
erywhere with a certain worst case guarantee, we focus on deriving
effective and efficient algorithms for MDPs with specific structures
and justify those structures through applications.

In the context of transfer learning in reinforcement learning, the
MDP-A model is novel. We now only discuss the works that are
most relevant to us, and point the interested reader to [16] for a sur-
vey. The MDP-A model addresses the case where the task changes
infrequently, but possibly drastically. Another work which address
slow change in the task description is [12]. In this, the authors
present a algorithm that uses decision trees to represent agent poli-
cies and incrementally adapts it (by pruning or extending the tree)
to accommodate the changing environment. The main difference is
that they address incremental change and we address drastic change
and across tasks.

In terms of previous work on TLRL the algorithm that most ap-
plies to our model is Policy-Reuse [6], [5]. This is a heuristic algo-
rithm that , given K different previous policies for a given domain,
tries to determine the best way to combine and use them. In our
case, for each source MDP, we get a policy for the target MDP
under the assumption that the behavior profile in that source task
is same as in the target MDP. The above algorithm can then be
used to choose between these policies. In fact, in our experiments,
we compare our algorithm against the Policy-Reuse algorithm. We
show that in addition to having theoretical guarnatees, our algo-
rithm can take advantage of the structure of MDP-As to rapidly
(often within a single episode) reject the incorrect previous tasks.
While for Policy Reuse, this may take a long time.

3. PRELIMINARIES
We use , for definitions, Pr to denote probability and IE for

expectation. Given a sequence of observations of random variable
X , the empirical estimate of IE[X] is the average of all the observed
values. Similarly, for a distribution D, its empirical estimate is
the empirical probability constructed from x1:t observations drawn
from D. We denote this distribution by Px1:t . The rest of this
section is devoted to defining Markov decision processes and the
value functions of their policies.

For an introduction to reinforcement learning using MDPs, see
[11] [15]. A finite MDPM is defined by the tuple (S,A,R, P,R, γ)
where S is a finite set of states, A is a finite set of actions and
R = [l, u] ⊂ IR is the set of rewards. P (s′|s, a) is a the state tran-
sition distribution for s, s′ ∈ S and a ∈ A while and R(s, a), the
reward function, is a random variable taking values in R. Finally,
γ ∈ [0, 1) is the discount rate.

A (stationary) policy π forM is a map π : S → A. A policy π
For a policy π, the Q function Qπ : S × A → IR of the policy is
given by:

Qπ(s, a) = IE[R(s, a)] + γ
X
s′

P (s′|s, a)Qπ(s′, π(s′))

The value function for π is defined as V π(s) = Qπ(s, π(s)). An
optimal policy π∗ is defined as π∗ = arg maxπ V

π – the Q func-
tion is given by

Q∗(s, a) = IE[R(s, a)] + γ
X
s′

P (s′|s, a) max
a

Q∗(s′, a)

For the optimal policy the value functions is denoted by V ∗. The
goal of the agent is to estimate Q∗ and then choose the action
arg maxaQ

∗(s, a) at state s.

3.1 MDPs With Agents
In this section we describe MDP-As and our transfer learning

problem. A MDP-A is an MDP with some additional structure in
the form ofK other agents with fixed policies operating in the envi-
ronment. It is defined by the tuple (S,A,R, T, L, γ,A′, τ), where
A′ is a joint action space of K different agents and τ is the joint
behavior profile of the K different agents. For a′ ∈ A′, a′(i), the
action of the ith agent might be ∅, indicating that the agent does
not perform any action. Each τ is a distribution over A′ indexed
by s, a – i.e. τ(s, a) is a distribution over A′. The transition dis-
tribution and reward random variable, respectively have the form
T (·|s, a, a′) and L(s, a, a′) where s ∈ S, a ∈ A, a′ ∈ A′. The
joint-action a′ is such that a′ ∼ τ(s, a). Since τ(s, a) depends
only on s and a, each MDP-A is indeed a MDP. Note that we re-
cover the standard form of the MDP transition and reward functions
as follows:

P (s′|s, a) =
X
a′

T (s′|s, a, a′)τ(s, a)(a′) (1)

and

R(s, a) =
X
a′

L(s, a, a′)τ(s, a)(a′) (2)

where τ(s, a)(a′) is the probability of joint action a′ under τ(s, a).

4. TRANSFER LEARNING IN MDP-A
Recall the goal of transfer learning is to use the information

gained in previous N tasks, the source tasks, to solve the current
task, the target task much faster. In our case, the source tasks areN
MDP-As and the target task is another MDP-A (we use the terms
task and MDP-A interchangeably). Our goal will be to use the
types of agents seen in the source tasks to infer the type of the
agents in the target task quickly after some initial exploration and
hence solve the target MDP-A much quicker.

In particular, in the transfer setting we consider, we assume that
the source MDP-As and the target MDP-A have identical S, A,
R, T , R, γ and A′, which are all known, and the only difference
between the tasks are the types τi. Hence we assume that when
solving the target task, the information we are given is in the form
of N different types τ1, τ2, · · · , τN , one corresponding each of N
source MDP-As. Our goal is now to use these types to solve the
target task much more quickly.

We denote the unknown type in the target task by τ̄ . When solv-
ing the target task, intially the learner knows exactly the P and R
functions (equations 1 2 respectively) at state-action pairs (s, a) for
which τ̄(s, a) is undefined (i.e. the other agents do not have an ef-
fect on these pairs) – we call these state-actions pairs the known
pairs – we call these pairs the unknown pairs. It does not know
the P and R function for all the other state-action pairs. As the
agent explores, the P and R functions at the latter group of state-
action pairs become known and the learner has a more accurate
value function with which to plan.

Hence, our learner has a exploration-exploitation dilemma when
solving the target task. On one hand the it would like to exploit its
current model of the world to accumulate rewards, and on the other
hand it needs to explore to determine as quickly as possible if the
current task has type similar to previous types. Note that this prob-
lem is not quite the same as the standard exploration-exploitation
problem in reinforcement learning. This is because the distribu-
tions P (s′|s, a) and R(s, a) are not entirely unknown, we know
that they are a convex combination, respectively, of T (s′|s, a, a′),
a′ ∈ A′ and L(s, a, a′), a′ ∈ A′. So the question is what do we do

in this case. In the following we first present the non-transfer/pure
RL algorithm four our setting, and from that derive our algorithm.

4.1 Pure Reinforcement Learning
A RL algorithm is defined by the action the learner takes at each

step and the subsequent updates it performs. The algorithm we use
is the R-Max [2] algorithm, a model based ‘optimal’ PAC-MDP
algorithm [7] (see [14] for a survey). In particular, we use exactly
the version of R-max algorithm that appears as Algorithm 1 in [14].
We briefly describe this algorithm and then discuss how it applies
to our case.

At each step t with current state s, the R-Max algorithm takes
the action arg maxa Q̂

∗(s, a), where Q̂∗(s, a) is the current esti-
mate of the optimal Q-function Q∗. Q̂∗ is initially set to U(s, a),
an input to R-Max which has to be an upper bound on Q∗(s, a).
The learner takes actions and collects samples at each state-action
pair (s, a) – i.e. the next state s′ and reward r observed when
action a is taken at state s. This is used to maintain empirical esti-
mates of P̂ (.|s, a) and ÎER(s,a). If at any step t the number of sam-
ples n(s, a) for a pair (s, a) is above m , CV 2

max
|S|+ln(|S||A|δ)
ε21(1−γ)2 ,

for a user given constant C, R-Max performs value iteration for
d− ln ε1−ln(1−γ)

1−γ e steps for all pairs that satisfy that the sample
count is ≥ m. This is the end of the algorithm.

Hence, the basic idea of R-Max is that initially it optimistically
assumes that all pairs (s, a) have the maximum possible value -
this encourages exploration. Then whenm samples are observed, it
updates their Q-value as that number is sufficient to guarantee that
with high probability, the estimates are close to their true values.
The guarantee of R-Max is that after polynomially many steps, with
probability 1 − δ, the value of the learned policy is ε-close to the
value of the optimal policy (see [14] for details).

First, note that since a MDP-A is an MDP, the R-Max algorithm
applies and can ignore the presence of other agents (see Sect. 3.1.
We adapt this algorithm in our case in the following way. We set
U(s, a) , 1

1−γ maxa′∈A′ L(r|s, a, a′). The constant C depends
on the mixing rate of the policies of the underlying domain and
during experiments we try to find the best value for it via trial and
error. For the known state-action pairs, the known reward and tran-
sition functions are always used, and for these pairs, n(s, a) > m
condition is always true. For the unknown state-action pairs, we
proceed as in R-max algorithm.

4.2 Transfer Learning
In the transfer case, we adapt the philosophy/idea behind the R-

Max algorithm for our purposes. The goal of R-Max is to optimally
mix exploration and exploitation. In out transfer learning case, the
goal of the learner will be to optimally mix exploration of which
of the previous types are being used in the current problem with
exploiting the knowledge of which of the previous types are correct.
So the goal of the learner will be to determine as quickly as possible
which, if any, of the source types is the current type. Then if it turns
out that none of the previous type is our current type, then it will
just switch to pure R-Max. Otherwise, if only one type is left, then
we compute the optimal plan given that the type is true and act
ε-greedily with respect to that optimal policy. We act ε-greedily
because it is possible that the current type is wrong and greedy
behavior w.r.t. the type-optimal policy keeps us in a region of the
MDP where we do not detect that it is defective.

We denote the set elements of the target MDP with a bar on top
(like P̄). Now let V Tt be the set of types that has not been elimi-
nated as incorrect at step t. For each τi ∈ V Tt, define the reward

function:

Ri(s, a) = IEτi(s,a)[L(s, a, a′)]

and then define the state transition function

Pi(s
′|s, a) = IEτi(s,a)[T (s′|s, a, a′)]

Let π∗i be the optimal policy for the MDP with reward functions
Ri and transition functions Pi on the state-action pairs for which
τi is defined and P̄ , R̄ on all the other state-action pairs. Let Q∗i be
the Q-function for π∗i . Then at step t, if the learner is at state s and
there all pairs s, a are known, it chooses the action:

at , arg max
i

Q∗i (s, a)

For a state that has an unknown action (i.e. (s, a) is unknown),
we need to choose the action that will eliminate the type most effi-
ciently. This is what we discuss now.

4.3 Choosing Actions At Unknown States
Let (s, a) be an unknown state-action pair and let x1:t be the ac-

tions a′ ∈ A′ observed when a is taken at s in the last t times we
visited this pair. The question is how do we use this to eliminate
previous types from τi. This is the classical hypothesis testing sce-
nario and we present two approaches. The first is the chi-squared
test and the second is novel based on Hoeffding bounds. For the
second case, we are able to present results on how many samples it
takes to eliminate the types with high probability. We present each
statistical test in turn, but now we present our method for using the
statistical tests.

The usage of the test takes the following form. The test is a func-
tion that, given a distribution τ(s, a) predicted by the type τ that
we want to test, and a sample x1:t, xi ∈ A′, observed at a particular
state s, a, outputs a real f(x1:t, τ(s, a)). If f(x1:t, τ(s, a)) > k,
then we can reject τ(s, a) as the generating distribution with prob-
ability αk, with k and αk depending on the test. The way this is
used to choose actions is given in step 7 in Algorithm 1. We now
describe our two tests.

4.3.1 The Chi-Squared Test
This is a standard test from statistics texts, which takes the fol-

lowing form in our case:

χ(x1:t, τ(s, a)) =

|A′|X
i=1

(ci − Ei)2

Ei
(3)

where ci is the empirical frequency of action a′i in x1:t and Ei =
τ(s, a)(a′). The significance level α is given by a standard table
for chi-squared test.

4.3.2 The Hoeffding Bound Based Test
We introduce a new Hoeffding bound based test, which we can

use to give sample complexity bounds for our learning algorithm.
The statistic used here is the empirical distribution. As above let
x , x1:t be the sample observed at a particular state-action pair
(s, a) and let τ be the type we want to check. The Hoeffding based
statistic f is simply

fH(x1:t, τ) = 1− exp[2K − t(||Prx − τ(s, a)||1)2] (4)

with K = ln(2|A
′| − 2) and Prx is the empirical distribution of

x1:t (see Section 3). fH is a valid test in the following sense:

LEMMA 1. fH(x1:t, τ) is the probability that after t steps τ
will not have generated a sample y such that ||Pry − τ(s, a)||1 >
||Prx − τ(s, a)||1.

PROOF. Consider the distribution τ(s, a) – from [17] (via an
application of Hoeffding bound), we know that a sample y , y1:t
generated by τ(s, a) will satisfy the folllowing:

Pr(||Pry − τ(s, a)||1 ≥ ε′) ≤ δ (5)

where, Pry is the empirical distribution of y (see section 3) and δ
= exp[2K/t −ε′2] with K = ln(2|A

′| − 2). Hence, by setting
ε = ||Prx − τ(s, a)||1 , ε1, we get that

Pr(||Pry − τ(s, a)||1 ≥ ε1) ≤ exp[2K − tε21]

and so

Pr(||Pry − τ(s, a)||1 ≤ ε1) > 1− exp[2K − tε21] =

fH(x1:t, τ)

Of course, Pr(||Pry − τ(s, a)||1 ≤ ε1) is simply the probability in
the statement of the lemma, and so this completes the proof.

So if fH(x1:t, τ) > α, with probability α, τ would have generated
a sample less than ||Prx−τ(s, a)||1 and we can reject τ with prob-
ability α. When we have n different types τi to test, by the union
bound, we need that:X

i

(1−fH(x1:t, τi)) ≤ (1−α)⇒
X
i

fH(x1:t, τi) ≥ n−α (6)

for the guarantee above to hold for all the types simultaneously.

4.4 Algorithm Description and Analysis
Our algorithm is presented in 1. It takes as input τ1, · · · τN the

set of source types, T , the number of steps for which to run and the
test statistic function f , and its range value α. The main variable
is V Tt, which are the set of types that have not been ruled out as
potential types at the beginning of step t.

In line 3, the main loop of the algorithm starts, and it continues
for T steps. In line 5, the algorithm checks to see if the current state
is unknown for same action a (i.e. τ̄(s, a) makes a prediction). If it
is, in line 6 we eliminate the types that do not predict anything (and
hence cannot be the true type τ̄). In line 7-8 we act conservatively
and take the action that maximizes the minimum possible change
in our chosen test and update the counts. Finally, we eliminate the
types that fail the statistical test.

Otherwise, in line 10 onwards we address the case that the state
is known for all the actions (i.e. τ̄ does not make a prediction). We
start by removing all types that do make a prediction. Then in lines
12-15, if only one type is left, we act-ε greedily with respect to that
type. Otherwise, we act greedily according to the type with best
predicted future reward.

Finally, if all the types are eliminated, we switch to R-Max in
line 21 by initializing it with our observed counts so far.

We now establish how quickly this algorithm rejects the incorrect
source types τ with high the desired degree of probability. Toward
that end, we need a particular mixing time.

DEFINITION 1. Define Tm to be the time such that any policy
will have visited each of the unknown state-action pair at least m
times.

This type of mixing time is used in bounding time-to-convergence
of PAC-MDP and many other algorithms giving performance guar-
antees for MDPs (see for instance, [7] or [2]. In fact, the notion
we use is likely to be much weaker than the ones used in those pa-
pers – that is in applications we expect Tm to be much smaller than
the mixing times presented previously. This is because the mixing
times used in the earlier papers bound the number of steps it takes

for a policy to converge to its true returns, whereas we just want
the number of visits to the unknown states. We can now show the
following.

THEOREM 1. Define ∆min = minτi mins,a ||τ̄(s, a)−τi(s, a)||1
and for fixed δ, define m , (2K − ln(δ/2n))/(∆min/2)2. Then
with probability 1 − δ, after Tm steps, the Type-Elimination when
using the Hoeffding test fH , eliminates all the incorrect types.

PROOF. After m = (2K − ln(δ/2n))/(∆min/2)2 samples (K
defined in section 4.3.2) are collected at a pair (s, a), the empir-
ical distribution Prx of the samples is within ∆min/2 of τ̄(s, a)
with probability at least 1 − δ/2N (this is from [17] via an appli-
cation of the Hoeffding bound). By definition of ∆min, for each
incorrect type τi, all states satisfy ||τi(s, a) − τ̄(s, a)||1 ≥ ∆min.
We can pick N such state-action pairs and the probability that the
samples xi, 1 ≤ i ≥ n all simultaneously satisfy ||Prx− τ̄(s, a)||1
> ∆min/2 is at least 1− nδ/2N = 1− δ/2.

Now consider an instantiation z of xi that does satisfy ||Prz −
τ̄(s, a)||1 > ∆min/2. Plugging t = m and ∆min/2 as the dis-
tance into the Hoeffding test definition in 4) we get fH(z, τi) =
1 − exp[2K − m(∆min/2)2] = 1 − δ/2N . With probability
at least 1 − δ/2N , the Hoeffding test rejects z. Now the vari-
able xi is independent of the random variable y in Lemma 1 and
hence by the union bound we have that with probability at least
1− 2δ/2N = 1− δ/N the Hoeffding test rejects the random sam-
ple xi. Since the distributions τ(s, a), τ(s′, a′) are independent
whenever (s, a) 6= (s′, a′), the union bound again applies and we
have that with probability 1 − δ all N xi are rejected by the Ho-
effding test, completing our proof.

5. EXPERIMENTS
In this section we describe experiments with our algorithm on

three different domains and compared with Policy-Reuse [6]. For
each domain we chose 10 source types and transferred to three tar-
gets. The first target (target 0 in the sequel) was with type identical
to one of the sources; the second target was identical to a target pro-
file for only half of the unknown state-action pairs (target 1 in the
sequel); and the third (target 2) was totally dissimilar (target 2 in the
sequel) – in this case no transfer was possible. We tested our algo-
rithm against the policy reuse algorithm because, as we discussed
in Section 2 this is the only relevant algorithm that we are aware of
– please see the next section for more detail. We used R-Max as
the base-line RL algorithm. All our results are presented averaged
over 10 trials. The results we present are the number of time steps
it took for the agent to reach the goal state. Since the reward struc-
ture in the domains were fully delayed, where we gave a reward
of −1 for all actions and a positive reward only when the learner
reached the goal state, this is appropriate. We excluded error bars
for the sake of clarity. The results are presented in the Figures 1
to 9. In the legend of the figures, TEi stands for Type-Elimination
with target task i and similarly PRi stands for Policy-Reuse with
target task i. RMX stands for R-Max. It will be noticed that all
the figures are missing the curve for TE2 – this is becuase our al-
gorithm worked as expected and is discussed below in more detail.
For the Type-Eliminiation algorithm we only show the results when
using our Hoeffding test – the Chi-squared version tended to reject
all the types immediately and simply switch to R-Max.

5.1 Policy Reuse
The policy resue algorithm is described in detail in [6]. It is a

heuristic algorithm that when given a collection of policies for a
particular domain, uses a soft-max criteria to choose between the

Algorithm 1 Type-Elimination
1: Input: Previous types τj , 1 ≤ j ≤ N , initial state si, test f

and constant α.
2: Initialize: Valid types V T0 = {τi : 1 ≤ i ≤ N}, t = 0,
s0 = si, t = 0.

3: for t = 1 to T and |V Tt| > 0 do
4: Set Vt+1 = Vt
5: if (st, a) unknown for some a then
6: Eliminate all τi from V Tt such that τi(s, a) is undefined.
7: Take action at , arg maxa mina′,τi∈V Tt [f(x1:ta

′, τi(s, a))−
f(f(x1:t, τi(s, a)], where x1:t is the sample collected at
s, a.

8: Observe st+1, a′t+1, rt+1 and update empirical distribu-
tions and rewards P̂ (.|st, at) and ÎER(st,at)

9: Eliminate all τi from V Tt such that f(x1:t, τi) > αf
where x1:t is the sample collected at st, at.

10: else
11: Eliminate all τi from V Tt such that τi(s, a) is defined.
12: if |V Tt| = 1 then
13: With probability ε, choose at to be an action cho-

sen at random, and other choose the action at =
arg maxa Q̄

∗(st, a)V Tt .
14: else
15: Choose the action at = arg maxa Q̄

∗(st, a)V Tt .
16: end if
17: Take at observe st+1, rt+1, update next state and reward

distributions for (st, at).
18: end if
19: end for
20: if t < T then
21: Run RMax for T − t steps, initialized with known P̄ and R̄

at known states and P̂ (.|s, a) and ÎER(s,a) at the unknown
but visited states.

22: end if

different policies. A default member of the collection is the Q-
learner policy. When chosen, each policy is run for an episode and
the weight of each policy is the total discounted reward obtained
by running that policy, averaged over the epiosdes in which it was
run. There is a very simple way to adapt this algorithm for our
case. Given the N source types τi, the policy library consists of
{πi : πi(s) = arg maxaQ

∗
i (s, a)} – i.e. greedy with respect to

the Q-function of the source types. In the setting we consider, the
main advantage of our algorithm is that it quickly, within a single
episode able to eliminate many incorrect source types, while for the
policy reuse case, it may need to many episodes to stop using the
wrong policies.

5.2 Cleaning Robots Domain
In the cleaning robot task the learner needs to learn to go from a

target location to a goal location. However, there are other agents
in the domain who are performing tasks in particular locations, in
this case cleaning the floor. A particular task consists of a set of
locations that the robots are cleaning at. If the learner attempts
to enter an area where a robot is currently cleaning, the learner is
blocked by that robot. If the learner attempts to enter an area, he
may be blocked, but not with certainty. Hence, a type consists of
the set of locations where the robots are cleaning and will block
or semi-block the learner. Depending on the time of the day, the
type changes, and the current type may or may not be the same as
previous types. Our algorithm will help the learner take advantage
if a particular location pattern repeats itself.

More precisely, our domain is a 30× 30 gridworld. The state of
the MDP is the (x, y) coordinate and the actions of the learner are
movements in the 4 cardinal directions, each of which succeed with
probability 0.7. There are 10 robots and for a given MDP, there are
10 different rectangular blocks that the learner is prevented blocked
and semi-blocked, one for each of the robot. If the learner attempts
to move into a blocked region, then the learners probability of mov-
ing in the desired direction is 0. If the learner tries to move into
a semi-blocked region, the probability of him moving in the de-
sired direction is 0.3. Finally, the sources we used assigned vary-
ing probabilities to the actions (chosen at random) and at random
locations.

The results are presented in Figures 1 to 3. The second two
figure each zooms in on three of the curves. For target 0 and
1, Type-Elimination eliminated all the incorrect types within the
first episode and thereafter followed only the correct type or half-
correct type (target 0 and 1 respectively). For these types, the cor-
responding policy found in the source was accurate enough so that
it performed quite well. Also, for target 2 Type-Elimination al-
most within the first episode rejected all the incorrect types and
switched to R-Max. For this reason its learning curve is miss-
ing from the graphs. This is good because recall that target 2 is
completely different from all of the source and should be rejected.
Type-Eliminiation outperformed Policy-Reuse quite handily.

Figure 1: Cleaning Agents domain: Combined Results

Figure 2: Result for Cleaning Agents Domain: zoomed in.

5.3 Congestion Domain
In this task, the goal of the learner is to navigate around a part

Figure 3: Result for Cleaning Agents Domain: zoomed in.

of a city and go from a start location to a goal location as quickly
as possible. In this case, the other agents are the other cars in the
road and the learner needs to avoid the traffic jams. The location
and size of the traffic jams and free regions will depend on the
current time of the day, and each such period of time consists of a
task and the pattern of traffic and free road is our type – this is a
type because this determines whether the other agents are allowing
or impeding the progress of the learner. In this case, the transfer
learning should help the learner determine from its experiencing
traffic at a particular location whether there will be a jam in some
other location.

Figure 4: Results for the Congestion domain.

This domain is a 30 × 30 gridworld. The learner has three ac-
tions, turn left and turn right, move forward and has three state vari-
ables, orientation, which can take 4 values, and the x, y location.
The turning action changes the orientation, and while the move for-
ward action changes the x, y location as determined by the orien-
tation. Each cell represents a particular cluster of city blocks and
has either normal, mild traffic, medium traffic or heavy traffic. The
condition of the traffic is only available when the agent arrives at
that location and tries to move. In each case, there is a probabil-
ity that the other agent will prevent the action the agent is trying
to perform. In a normal traffic, the probability is 0, while in the
mild, medium, heavy and crawl traffic setting the probability is re-
spectively 0.5, 0.6, 0.8 and 0.9 respectively. As before the sources
types were assigned the location of their agents at random.

The results for this task are presented in Figures 4 to 6 (again
the latter to zooming in). The tale being told by this graph is the

Figure 5: Results for the Congestion domain: zoomed in.

Figure 6: Results for the Congestion domain: zoomed in.

same as the in the Cleaning Agent domain, with Type-Elimination
outperforming Policy-Reuse and rapidly rejecting incorrect source
types, but keeping the useful source types. The only anomaly here
are the spikes – we believe this is simply because we needed to
average over more trials.

5.4 Niche Factory Floor
In this problem we consider the learner operating in a factory that

performs flexible, niche production. This domain was inspired by
[1] [8], as an analogue to and extension of the the Kiva systems [4]
in the context of these new type of factories. In this case, instead of
producing some specific items, the factory is able to construct cus-
tomized products to meet the specialized needs of a niche market,
and the specific needs can vary quite rapidly compared to tradi-
tional markets. We consider a factory making industrial and house-
hold robots and at any point in time, there are M different types of
robots being constructed byM different collection of agents which
share common machines and warehouses for components needed
for assembling the robot. The learner controls one such collection
of agents and its goal is to assemble its own assigned product using
the shared resources. As mentioned above, due to varying market
conditions, the exact needs of the other groups vary based on what
the customers are requesting at that point in time. For efficiency
reasons we want production to be performed in a distributed fash-
ion, and so the learner has to determine through interaction what
types of schedule of access to resources will work given the current
demands of the other agent groups.

More specifically, to assemble its assigned robot, the learner

needs to procure 5 components and then put them together. The
components may be put together in any order. But the warehouse
the items being procured from and the assembly machines are shared
and so access to them is not guaranteed. The state is defined by
5 ternary features, one for each component. A value of 0, 1 and
2 means, respectively, that the corresponding component has not
been procured, procured and assembled respectively. Hence, the
learner starts off with features 0, 0, 0, 0, 0 and finishes the produc-
tion cycle with component features 2, 2, 2, 2, 2. The factory floor
has 5 warehouses, each housing certain combinations of compo-
nents and 5 assembly stations, each of which can combine certain
components. The goal of the learner is to procure the components
from the warehouse, and then take them to the assembly stations, at
which point they may be assembled. As mentioned above, the other
agents are also sharing this resource. Ordinarily when no other
agent is competing for these resources, each of these actions suc-
ceed with probability 0.9. However, when there are other agents,
the actions may succeed with probability 0.5, 0.3 0.1 depending
on how much demand there is from the other agents. This demand
manifests as various three actions, one for each possible chance of
success.

Figure 7: Results for the Niche Factory Floor domain.

Hence, each type is determined by the pattern of demand at the
various warehouses and stations. The domain is a 10 × 10 grid-
world and the 20 locations mentioned above are scattered around
the domain. Therefore, the state of the learner is defined by 8 fea-
tures. The first 5 were mentioned above. The next 2 are the location
on the grid, and final one indicates the type of the cell (i.e. floor,
warehouse, assembly station). So in total there are 24300 states
for this task. The learner has 4 actions, each for movement in each
of the cardinal directions, and 1 action for requesting procurement
and another action for requesting assembly. The learner gets a re-
ward of 1 for every successful procurement and assembly operation
and a reward of 10 when it reaches the shipping point with all the
features 2, 2, 2, 2, 2. The learner receives a reward of −1 for every
time step, which means it needs to construct its batch of robot as
quickly as possible. The sources were again constructed randomly.

The results for this task are presented in Figures 7 to 9. The
qualitative result of this graph is the same as before so we do not
elaborate on it further. The only exception here is that the variance
of R-Max is extremely high in this domain, so the fact that Type-
Eliminiation immediately gives is only a partial win. We discuss
this further in the Conclusion.

6. CONCLUSION

Figure 8: Results for the Niche Factory Floor domain: zoomed
in.

Figure 9: Results for the Niche Factory Floor domain: zoomed
in.

In this paper we present an algorithm for a class of non-stationary
environments where the non-stationarity arises from the presence
of other decision making agents whose behavior changes discretely,
slowly but greatly. We pose this problem as transfer learning in a
novel sub-class of MDPs, so that learning to deal with new agent
behavior can be posed as transferring information from a previously
solved MDP to a new one. We present an algorithm in this set-
ting which uses a novel statisitcal test of our formulation to rapidly
eliminate previously solved MDPs that will not be useful for the
current problem. We present some theoretical performance guar-
antees for this algorithm and then demonstrate its empirical prop-
erties by performing experiments on three domains with different
characteristics. The results show that the algorithm performs as
promised, in that it is able to stop using previous tasks if there is
reasonable disagreement between the model implied by the previ-
ous task and the observed world. However, this also points toward
a potential shortcoming of our algorithm which may be relevant in
some domains, which is that it does not try to make use of previ-
ous tasks that are partially correct. This will be one possible future
extension of this algorithm. Another possible criticism might be
that instead of evaluating previous types based on their predicted
disitrubtion over agent actions we should simply evaluate based on
the observed distriubiton over states. However, this would violate
our core motivation of the existence of types - a notion that enjoys
compelling support in many different domains including game the-
ory and cognitive science. Our current approach suggests that we

may be able to extend this basic idea to extensive form games and
other related models of inter-dependent decision making.

Acknowledgements
This work has taken place in the Robust Autonomy and Decisions
group within the School of Informatics. Research of the RAD
Group is supported by the UK Engineering and Physical Sciences
Research Council (grant number EP/H012338/1) and the European
Commission (TOMSY Grant Agreement 270436, under FP7-ICT-
2009.2.1 Call 6).

7. REFERENCES
[1] A third industrial revolution. Economist, April 21st, 2012.
[2] R. Braffman and M. Tennenholtz. R-max – a general

polynomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research, 3:213–231,
2002.

[3] S. Choi, D.-Y. Zhang, and N. L. Zhang. Hidden-mode
markov decision processes for nonstationary sequential
decision making. Sequence Learning – Paradigms,
Algorithms and Applications, 2000.

[4] R. D’Andrea. Guest editorial: A revolution in the warehouse
– a retrospective on the kiva systems and the grand
challenges ahead. IEEE Transactions on Automation Science
and Engineering, 9(4), Ocotber 2012.

[5] F. Fernandez, J. Garcia, and M. Veloso. Probabilistic policy
reuse for inter-task transfer learning. Robotics and
Autonomous Systems, 58:866–871, 2010.

[6] F. Fernandez, J. Garcia, and M. Veloso. Probabilistic policy
reuse in a reinforcement learning agent. In Proceedings of
the 5th International Conference on Autonomous Agents and
Multiagent Systems, 206.

[7] M. J. Kearns and S. Singh. Near-optimal reinforcement
learning in polynomial time. Machine Learning, 49(2-3),
1999.

[8] P. Marsh. A New Industrial Revolution. Yale University
Press, 2012.

[9] J. Morimoto and K. Doya. Robust reinforcement learning.
Neural Computation, 17:335–359, 2005.

[10] A. Nilim and L. E. Ghaoui. Robust control of markov
decision processes with uncertain transition matrices.
Operations Research, 53(5):780–798, 2005.

[11] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley and Sons,
1994.

[12] J. Ramon, K. Driessens, and T. Croonenborghs. Transfer
learning in reinforcement learning problems through partial
policy recycling. In Proceedings of The Eighteenth European
Conference on Machine Learning, 2007.

[13] B. C. Silva, E. W. Basso, A. L. C. Bazzan, and P. M. Engel.
Dealing with non-stationary environments using context
detection. In Proceedings of the 23rd International
Conference on Machine Learning, 2006.

[14] A. L. Strehl, L. Li, and M. L. Littman. Reinforcement
learning in finite MDPs: PAC analysis. Journal of Machine
Learning Research, 10:2413–2444, 2009.

[15] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[16] M. Taylor and P. Stone. Transfer learning for reinforcement
learning domains: A survey. Journal of Machine Learning
Research, 10:1633–1685, 2009.

[17] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M. J.
Weinberger. Inequalities for the L1 deviation of the empirical
distribution. Technical Report HPL-2003-97R1,
Hewlett-Packard Labs, 2003.

[18] J. Y. Yu and S. Mannor. Arbitrarily modulated markov
decision processes. In Proceedings of the IEEE Conference
on Decision and Control, 2009.

