Lifelong Learning of Structure in the Space of Policies

Majd Hawasly and Subramanian Ramamoorthy
School of Informatics, University of Edinburgh
Informatics Forum, 10 Crichton Street
Edinburgh, EH8 9AB, United Kingdom

M.Hawasly @sms.ed.ac.uk

Abstract

We address the problem faced by an autonomous agent that
must achieve quick responses to a family of qualitatively-
related tasks, such as a robot interacting with different types
of human participants. We work in the setting where the tasks
share a state-action space and have the same qualitative ob-
jective but differ in the dynamics and reward process. We
adopt a transfer approach where the agent attempts to exploit
common structure in learnt policies to accelerate learning in
a new one. Our technique consists of a few key steps. First,
we use a probabilistic model to describe the regions in state
space which successful trajectories seem to prefer. Then, we
extract policy fragments from previously-learnt policies for
these regions as candidates for reuse. These fragments may
be treated as options with corresponding domains and termi-
nation conditions extracted by unsupervised learning. Then,
the set of reusable policies is used when learning novel tasks,
and the process repeats. The utility of this method is demon-
strated through experiments in the simulated soccer domain,
where the variability comes from the different possible be-
haviours of opponent teams, and the agent needs to perform
well against novel opponents.

1 Introduction

Consider a domestic robot that has to interact with humans
to perform a specific task over an extended period of time.
This robot should be made able to handle the variability in
its task, arising, for example, from the inherent variability
in human behaviour. This task could then be expressed as a
family of related tasks, each slightly different from the oth-
ers. These can be modelled as a family of Markov decision
processes (MDPs) with a shared qualitative objective. These
MDPs have the same state-action space, but differ in dynam-
ics and reward processes. We need the robot to react quickly
and successfully in a large fraction of the set of tasks, while
it is only able to train extensively on few examples offline.

One should note that the range of variability is unbounded
and unknown in advance for this kind of task. This calls for
a lifelong learning approach, where the robot keeps learning
from every new interaction in order to enhance its perfor-
mance at the following trials.

To achieve quick response to a new situation, it is desir-
able to initialise the policy using knowledge acquired from

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

S.Ramamoorthy @ed.ac.uk

previous instances. This is a question of transfer. In our set-
ting, we consider all the instances to have the same qualita-
tive objective in related circumstances, so it is plausible that
the set of policies for the task family has a common struc-
ture. Discovering this commonality would give the robot a
head start when learning in any new instance. We consider
the case where the structure in the set of policies can be de-
scribed using a collection of component behaviours (or sub-
tasks). A structured policy then is a sequential composition
of subtask policies. The framework of options (Sutton, Pre-
cup, and Singh 1999) is one example of policy space ab-
straction, where an option is a macro-action, with a domain
of applicability and a termination condition, that can be be
sequenced in a reinforcement learning setting. Options have
been used previously for transfer (e.g. (Konidaris and Barto
2007)), and we will use them to represent the common sub-
tasks.

Describing the structure in policy space of a family of
tasks is not easy. It has been approached previously for tasks
that have a simple mapping between the task space and the
policy space, in that varying the task slightly in some di-
rection would also vary the optimal policy slightly in some
other direction. Mainly, these tasks can be parametrised us-
ing few parameters, and their policies can be parametrised
as well. Then, policies can be automatically generated for
a task using the mapping. An example of one successful ap-
proach in this regard is parametrized skills (Silva, Konidaris,
and Barto 2012) where the structure in the parameter space
of optimal policies is learnt. In this paper, we are inter-
ested in tasks whose policy spaces do not necessarily have
a smooth continuous mapping to the task space, or ones
wherein task parameters are unknown or unobservable (e.g.
personal preferences of people).

The ‘trick’ we use to describe the structure in the policy
space is by considering the corresponding structure in the
state space, manifested as the state regions in which good
behaviour is observed for many previously-learnt policies.
Then, we assign previously-learnt policy fragments to these
regions through a process of policy reuse. This will ‘tag’
parts of the state space with behaviours, emulating a struc-
turing in the policy space.

The objective of this paper is to present a framework that
continually builds and refines a structured model of the pol-
icy space contingencies in a life-long process. This kind of

continual learning is necessary because the variability in the
task is unknown beforehand but rather discovered incremen-
tally. So, by incrementally considering good policies for a
sequence of tasks drawn from a set, we aim to generate a
more refined model in the form of good reusable subpolicies
that are expressed as options.

We propose an incremental procedure that hypothesises
a decomposition in state space by fitting a probabilistic
model to sampled trajectories of learnt policies. Then, frag-
ments of the learnt policies are assigned to the components
of the probabilistic model, and these are described as op-
tions. These options are used when learning the following
instance, to generate more sampled trajectories and hypoth-
esise a refined decomposition.

The rest of the paper is organised as follows. The related
literature is discussed in the next section, before presenting
the technical setup of the paper. Then, ILPSS (for Incremen-
tal Learning of Policy Space Structure) is presented and de-
scribed in detail. After that, we demonstrate empirical re-
sults, followed by a discussion of the merits of the proposed
framework.

2 Related Work

Learning to act in a set of related tasks by leveraging the
experience gained in some of them is a branch of Trans-
fer Learning (Taylor and Stone 2009), or, in some versions,
Multi-task Reinforcement Learning (MTRL). The idea is to
use a set of source tasks to accelerate learning in a novel
target task, different in rewards or dynamics. Some methods
rely on explicit and observable parametrisation of the task
space (Mehta et al. 2008; Silva, Konidaris, and Barto 2012),
while others assume a distribution of variability, either
known (Perkins, Precup, and others 1999), or approximated
from previously seen source tasks (Tanaka and Yamamura
2003; Snel and Whiteson 2012). Bayesian methods use these
distributions as priors to estimate the model of the novel
target task (Sunmola and Wyatt 2006; Wilson et al. 2007;
Wilson, Fern, and Tadepalli 2012). A different approach is to
find a smaller task space, dubbed the agent-space, in which
the related tasks are the same (Konidaris and Barto 2007).

Policy reuse is another Transfer Learning approach that
deals with related tasks. Using a mechanism to choose the
most similar seen task to the current one, policies can be
used as is on the target task, or alternatively, they can be used
to accelerate learning, e.g. by biasing the exploration scheme
in the new task by the most similar learnt policy (Ferndndez
and Veloso 2006).

One way to counter complexity in reinforcement learning
is through exploitation of hierarchical structure in policies.
Hierarchical reinforcement learning (Barto and Mahadevan
2003) provides a number of tools to organise and learn a
hierarchical policy for a specific task, with the framework
of options (Sutton, Precup, and Singh 1999) being one of
the more flexible. One way to uncover the hierarchy auto-
matically in a task requires discovering subgoals that are es-
sential to the achievement of the task objective. One way
to describe this has been through the notion of a bottle-
neck which is a landmark state that successful trajectories

tend to go through, while unsuccessful ones do not. Find-
ing bottlenecks has been approached in many ways, includ-
ing state visitation frequencies (Stolle and Precup 2002;
Simsek and Barto 2004), and through graph-theoretic prop-
erties of the transition graph, like Max-flow/Min-cut (Men-
ache, Mannor, and Shimkin 2002) and betweenness (Simgek
and Barto 2009).

Exploiting abstraction for transfer purposes has seen some
success, where the abstraction is learnt from many source
instances rather than the single task in the case of classical
HRL. Using options, Konidaris and Barto (2007) introduce
portable options which are abstract actions defined in the
agent-space rather than in the full problem-space, so that
they can be used in any problem that share that reduced
representation. Skills are extracted and chained to construct
skill trees in (Konidaris et al. 2010) from expert demonstra-
tions, while generalisation for parametrisable tasks can be
achieved through the discovery of smooth low-dimensional
spaces where the policies of skills lie (Silva, Konidaris, and
Barto 2012).

Also, there have been prior work investigating the use of
probabilistic models in hierarchical reinforcement learning.
In (Manfredi and Mahadevan 2005), a graphical model for
both state and policy abstraction is trained from sample tra-
jectories using Expectation-Maximization (EM) algorithm,
but for a single task.

3 Setup
3.1 Markov decision process

We consider tasks that can be modelled as discrete-time
Markov decision processes (MDP). An MDP m is the tu-
ple (S, A, T, R), where S is a finite state space, A is a finite
action space, T : S x A x S — [0,1] is the dynamics of
the world, and R : S x A x S — R is the reward pro-
cess that encodes the goal of the task. A (Markov) policy
for an MDP is a stochastic mapping from states to actions,
m: S x A — [0,1], and the optimal policy 7* is the policy
that maximises expected cumulative reward.

We consider episodic, goal-oriented tasks, in which ter-
mination occurs either when the agent reaches specific goal
states, or when the episode elapses.

3.2 Family of MDPs

The agent faces a sequence of instances of its task, m;, ¢ =
1,2,3, - - -, each slightly different. We model this variability
by a set of MDPs M with a common objective. These MDPs
share the state-action space S x A, but the dynamics 7" : S X
A xS — [0,1] and the reward process R : S x Ax S — R
may be different for each member of the family m € M.

We assume that the variability model of the task, from
which the instances are drawn, is unknown to the agent be-
forehand.

3.3 Options

The framework of options (Sutton, Precup, and Singh
1999) is one approach to hierarchical reinforcement learn-
ing (Barto and Mahadevan 2003) that employs a form of

generic temporally-extended actions. An option is the three-
tuple (I, 7, 3): I C S is the initiation state set where the
option is allowed to be invoked, 7 is a (Markov or semi-
Markov) policy which is followed when the option is in-
voked, and (8 is a termination probability distribution over
the state space which encodes stochastically the success and
failure criteria of the option. Options are flexible objects
that generalise primitive actions. A primitive action is sim-
ply an option that terminates exactly after one step. For this
model, learning algorithms designed for MDPs can be ex-
tended to solve SMDPs (semi-Markov decision processes)
that emerge from the temporal abstraction brought by the
use of options.

4 ILPSS: Incremental Learning of Policy
Space Structure
Now, we describe our proposed framework. Figure 1 gives

a snapshot of its operation. It comprises the following key
steps:

Slmulahun Cullatmg states

Set of good policies Successful traces Bag of states

Expectation
Maximisation

SMDP learning

New instance policy Options Probabilistic model

Figure 1: A high level caricature of ILPSS.

1. Starting from a collection of n good policies
Ty, M1,...,T, oOf some samples of the task
mg, mi,...,M, € M, we sample a set of complete
episode state traces T = [Sq, . . ., Sterm] € Sitl,

2. We label the trajectories with respect to their success (+)
or failure (—) in reaching the goal. An episode is suc-
cessful if it terminates at the goal state, while episodes
that elapsed before reaching the goal state are considered
failures. This is especially relevant when dealing with
highly-stochastic tasks, like interacting with human sub-
jects. Only the successful traces | J_, {7;"} = D are used.

3. We search for a generative probabilistic model of D. The
combination of such a model with policy reuse is what
defines ILPSS. In more concrete terms, we want to find a

model that maximises the log likelihood of the data

log P[D; 0] = Zlog Pl{7;"}16] (1)

> log Plrjti6),)

assuming independence of traces for a specific task in-
stance given the model, as well as independence of differ-
ent instances’ traces, being drawn from the same model
which summarises all the correlations. Initially, we ignore
time and use these traces as bags of states,

log P[r; 0] =) " log P[s[0] 3)

seET

The model we use here for P[s|6] is a mixture model of
| K| multivariate Gaussian kernels, each represented by its
mean u and covariance matrix Y. However, any suit-
able alternate model can also be used.

log P[s|6] = log ZpkN(S; ks D) “)
3

The choice of the model is task-specific and does not af-
fect the operation of ILPSS.

For our choice of model, the parameters are the weights
{pr}, means {1} and covariances {X}. We allow {py }
to be instance-specific, i.e. each instance has it own
weighting of the components, {p;} = (J;—,{px'}, while
{pr} and {3} are instance-independent, i.e. the in-
stances share the exact same components. That is, we
push toward finding a common set of mixture components
across the different instance policies, regardless of their
relative significance in various instances.

The mixture components define kernels in the state space,
and they are an important component of our representa-
tion of the policy space, in that we probabilistically assign
to the regions defined by them ready policy fragments. A
fragment for a specific kernel is borrowed from a learnt
policy of a previous instance, constrained to the respec-
tive kernel’s state space region. The scale (or weight) of
a component k in a task instance i, as captured by p’, is
ignored as it is irrelevant from a structure-learning point
of view.

To fit the model, we choose the desired number of kernels
| K| and use an adapted Expectation-Maximisation (EM)
algorithm (Dempster, Laird, and Rubin 1977) that takes
our constraint into account. In the Expectation phase, the
kernels are initialised randomly, and the model weights,
or responsibilities, are computed accordingly. In the Max-
imisation phase, the parameters of the model are recom-
puted using the responsibilities. We calculate the means
and covariance matrices using the complete data set,
while the weights {p;.‘} use only the data from instance 1.

. Then, each of the discovered kernels spawns a set of pol-

icy fragments, each borrowed from a different previously-
learnt policy. We describe these policies by a set of op-
tions Of. The domain and the termination condition of O,
options are both the PDF defined by the kernel. That is, an

option from Oy, is allowed to start at a particular state s
with a probability equal to KC(s, p), and will continue,
stochastically, with probability equal to &C(s, i) as well,
and terminate with probability 1 — (s, ux). The option
policies are the restriction of the previously-learnt policies
T, 1, - - - , Ty, to the corresponding option domain. That
is, we are reusing policies of previous tasks in controlled
regions of state space where they fared well in experience.

5. Next, the agent is presented with another task instance,
My+1. In a similar fashion, the agent will learn a policy
mn41 for that instance with the exception that in this case
the agent is allowed to use the new options in learning.
The resultant policy will contain, in addition to normal
actions, pointers to 7, . . ., Tp,.

6. We adopt the exact same procedure on the new policy
Tp41 (extracting traces, bag of states, probabilistic model,
then options) and this continues in what can be described
as a lifelong learning process.

The full procedure is stated in Algorithm 1.

Algorithm 1 ILPSS: Incremental Learning of Policy Space
Structure
Require: the number of kernels |K|, input policies
TQye-eyTp.
1: for every new instance do
2: Generate state traces {7} from input policies through
simulation/ runtime recording.
3: Label and extract successful traces {7}.
4: Create ‘bags of states’ data set D = U:;l{ﬁ“}
5: Fit a probabilistic model to D using EM algorithm,
generating a set of kernels K in state space.
6: Create a set of options {O} using the discov-
ered kernels K and the input policies, with o} =
(K(, 1), K(.,), mi) € O
7: Learn a policy for the new instance with {Oy} by
SMDP learning.
8: Add the learnt policy to the input policy.
99 n+<n+l
10: end for
11: return Option set {Oy}.

5 Empirical Results

We use the domain of simulated robotic soccer to demon-
strate the approach. The task in this experiment is a training
drill for 2 vs. 2 players, in which the team with ball posses-
sion tries to cross a specific line in the field with the ball. The
task is episodic, starting with the agents in set positions, and
terminating either successfully when the goal is achieved,
or negatively when the adversaries intercept the ball, kick it
out of the training region (35mx35m), or when the episode
elapses (100 time steps). The experiment was conducted us-
ing Robocup 2D Simulation League Soccer Server (Noda
and Matsubara 1996) and the Keepaway extension (Stone,
Sutton, and Kuhlmann 2005). The setup is shown in Fig-
ure 2.

Figure 2: The experiment setup. LEFT: the attacking team
starts from the top corners, while the defending team starts
from the bottom. RIGHT: the task of the attackers is to reach
the bottom line with the ball, with the middle point having
the highest reward.

The state space is defined using 9 continuous state fea-
tures describing the position and orientation of the agent
with respect to other agents and the goal, while the action
space comprises 3 basic options, for holding the ball, pass-
ing to team mate and dribbling toward the goal. The action
set is enriched later with discovered options.

Only the agent that has the ball is learning, while others
use fixed stochastic behaviours. The variability is in oppo-
nent behaviour, in that different opponent teams have dif-
ferent tendencies toward the ball and the goal line. In the
experiment four opponent teams are used. The first two only
intercept the ball, with different coordination protocols be-
tween the players. One opponent in the third type intercepts
the ball while the other protects the goal line, while both op-
ponents protect the goal in the fourth type, and only leave it
for the ball with small probability.

The opponents are presented to the learning agents se-
quentially, with structure extraction happening after each in-
dividual trial. After every trial, traces are used to generate
5 kernels, which generate 5 options. After experiencing the
first three opponents and learning a repertoire of options, the
performance against the last opponent using these options is
compared to learning the same task from scratch. The results
are shown in Figure 3.

As it is clear, using the set of options discovered by ILPSS
gives a head start in performance. This shows that ILPSS is
able to produce useful abstractions in the policy space that
would allow faster convergence in a novel instance.

6 Extensions

To avoid the explosion in the size of the option set that is
carried out from one step to the other in ILPSS, a simple
‘discounting’ procedure is proposed: the options that do not
get used in future learning trials will be less likely to survive
in the set. One way to achieve this discounting is through re-
ducing the probability with which the option may be selected
in future, i.e. shrinking the option’s initiation set. Because
we define the initiation set probabilistically using a kernel
function, we can achieve this effect by multiplying it with a
scalar smaller than one in every trial where the option is not
selected for the optimal policy. This will have the effect of
shrinking the useless option domains with time. Finally, the

average reward

Learning with ILPSS

Learning from scratch

" 1 1 I I I 1
o 0.5 1 1.5 2 o8 3 3.5 4

episode x 10

Figure 3: Average reward achieved against a novel opponent
using options acquired by ILPSS against three other oppo-
nents in three previous task instances (BLUE), compared to
learning anew (RED).

option will be pruned out of the set after crossing a threshold
on effective option sizes.

Discounting unused options helps reduce the size of the
skill set the agent has to carry to new instances. Effectively,
this is a kind of ’forgetting’ of old behaviours. Still, this
does not mean the agent will lose what has been learnt
completely, as the iterative nature of the learning process
pushes the agent to try learnt skills in new instances and to
form new, extended skills based on them using reinforce-
ment learning, leading to useful generalisation of acquired
skills.

7 Discussion

One intuition behind the incremental nature of the frame-
work is in ‘biasing’ the evolved decomposition toward find-
ing common components that would be useful for lifelong
learning . Using the previously-learnt options during learn-
ing a new task instance would encourage the agent to search
for a solution first in the policy subspace spanned by be-
haviours that proved useful in the past, before extending
to the wider policy space. If a satisfactory solution can be
found early, behavioural commonalities which are relevant
to many of the experienced instances would be developed
and maintained. We argue that this kind of structure is what
is needed when facing a novel instance of a task.

Many methods of learning the hierarchy in hierarchical
reinforcement learning use the notion of bottleneck to de-
scribe the states that are essential in the achievement of a sin-
gle task. These are landmark states that successful trajecto-
ries tend to go through (e.g. doorways in the rooms environ-
ment), and thus found using visitation frequency or through
specific attributes in transition graphs. This concept of bot-

tlenecks works best for small, discrete state spaces and sin-
gle tasks, and its target is to locate possible subgoals, leav-
ing the policies to achieve them to be separately learnt. On
the other hand, ILPSS generalises that concept and takes a
probabilistic approach in defining the interesting regions in
the state space, which might be more appropriate in large
and continuous state spaces. Also, it immediately discov-
ers where the existing policies might be useful, avoiding the
two-step process of explicit discovery of subgoals followed
by policy learning.

Another method which defines skills that have probabilis-
tic domains is the SKILLS algorithm (Thrun, Schwartz, and
others 1995). However, the aim there is to find a compact
set of macro-actions that minimises the description length
(DL) of the action set in a single task. The policy of a skill is
learnt in a way that balances performance loss with compact-
ness gains, while for ILPSS, policies are chosen to support
an extensive family of tasks, while compactness is observed
through the option discounting process.

A work of Foster and Dayan (2002) investigates the struc-
ture in the space of value functions of optimal policies for
related tasks. For that, they employ a mixture model as the
generative process of value functions. The components of
that mixture represent the discontinuity in the value function
caused by inherent properties of the task (e.g., location of
walls and barriers in a room environment). Then, the model
is used to accelerate learning in new instances through aug-
menting the state space with the discovered higher-level fea-
tures. Our framework defines structure in policy space, im-
plicitly, through probability distributions over state space
and reusable policy fragments. Our components describe not
state regions where the value function is smooth but rather
the regions where many learnt policies are stable and per-
forming well. Also, our framework only requires sample
traces from good policies rather than complete explicit rep-
resentation of the value function, which may be infeasible
in big worlds, or before learning converges to a stable value
function.

The use of Gaussian kernels to describe option domains
may not be the optimal choice, as they suggest a kind of
symmetry over various dimensions which may not be true.
However, they are an intuitive choice from a computational
point of view. More work needs to be done on suitable
shapes of the boundary of a skill in state space.

8 Conclusion

We introduce a framework for learning and refining a
structural description of the space of policies for a set of
qualitatively-related task instances. The aim of the model is
to enable an agent to react quickly in novel instances of the
same task. We employ a principled probabilistic method to
decompose the state space, and relate the learnt abstraction
with policy fragments through policy reuse. The resulting
structure is maintained using a set of temporally-extended
options. We note that learning online is essential for extract-
ing useful decompositions in policy space.

This method does not require explicit representation of
the space of policies, and it does not rely on the optimality
of the input policies, which allows it to scale well. It only

uses a set of trajectories of successful trials and the policies
that generated them to enable the agent to produce a rough
and quick solution to a novel instance, which can then be
refined by learning.

Testing this framework on large problems to understand
its scalability is a topic of future work, as well as under-
standing the effects of state abstraction on the produced ac-
tion abstraction.

9 Acknowledgements

This work has taken place in the Robust Autonomy and De-
cisions group within the School of Informatics, University of
Edinburgh. Research of the RAD Group is supported by the
UK Engineering and Physical Sciences Research Council
(grant number EP/H012338/1) and the European Commis-
sion (TOMSY Grant Agreement 270436, under FP7-ICT-
2009.2.1 Call 6).

References

Barto, A., and Mahadevan, S. 2003. Recent advances in hi-
erarchical reinforcement learning. Discrete Event Dynamic
Systems 13(4):341-379.

Dempster, A.; Laird, N.; and Rubin, D. 1977. Maximum
likelihood from incomplete data via the em algorithm. Jour-
nal of the Royal Statistical Society. Series B (Methodologi-
cal) 1-38.

Ferndndez, F., and Veloso, M. 2006. Probabilistic policy
reuse in a reinforcement learning agent. In Proceedings
of the fifth international joint conference on Autonomous
agents and multiagent systems, 720-727. ACM.

Foster, D., and Dayan, P. 2002. Structure in the space of
value functions. Machine Learning 49(2):325-346.

Konidaris, G., and Barto, A. 2007. Building portable op-
tions: Skill transfer in reinforcement learning. In Proceed-
ings of the 20th International Joint Conference on Artificial
Intelligence, volume 2, 895-900.

Konidaris, G.; Kuindersma, S.; Barto, A.; and Grupen, R.
2010. Constructing skill trees for reinforcement learning
agents from demonstration trajectories. Advances in neural
information processing systems 23:1162—-1170.

Manfredi, V., and Mahadevan, S. 2005. Hierarchical rein-
forcement learning using graphical models. In Proceedings
of the ICMLO5 Workshop on Rich Representations for Rein-
forcement Learning, 39—44.

Mehta, N.; Natarajan, S.; Tadepalli, P.; and Fern, A.
2008. Transfer in variable-reward hierarchical reinforce-
ment learning. Machine Learning 73(3):289-312.

Menache, 1.; Mannor, S.; and Shimkin, N. 2002. Q-cut:
dynamic discovery of sub-goals in reinforcement learning.
Machine Learning: ECML 2002 187-195.

Noda, I., and Matsubara, H. 1996. Soccer server and re-
searches on multi-agent systems. In Proceedings of the
IROS-96 Workshop on RoboCup. Citeseer.

Perkins, T.; Precup, D.; et al. 1999. Using options for knowl-
edge transfer in reinforcement learning. University of Mas-
sachusetts, Amherst, MA, USA, Tech. Rep.

Silva, B. D.; Konidaris, G.; and Barto, A. 2012. Learning
parameterized skills. In Langford, J., and Pineau, J., eds.,
Proceedings of the 29th International Conference on Ma-
chine Learning (ICML-12), ICML 12, 1679-1686. New
York, NY, USA: Omnipress.

Simgek, 0., and Barto, A. 2004. Using relative novelty to
identify useful temporal abstractions in reinforcement learn-
ing. In Proceedings of the twenty-first international confer-
ence on Machine learning, 95. ACM.

Simgek, O., and Barto, A. 2009. Skill characterization based
on betweenness. In In Advances in Neural Information Pro-
cessing Systems 22.

Snel, M., and Whiteson, S. 2012. Multi-task reinforcement
learning: shaping and feature selection. Recent Advances in
Reinforcement Learning 237-248.

Stolle, M., and Precup, D. 2002. Learning options in re-
inforcement learning. Lecture Notes in Computer Science
2371:212-223.

Stone, P.; Sutton, R.; and Kuhlmann, G. 2005. Reinforce-
ment learning for robocup soccer keepaway. Adaptive Be-
havior 13(3):165-188.

Sunmola, F., and Wyatt, J. 2006. Model transfer for markov
decision tasks via parameter matching. In Proceedings of the
25th Workshop of the UK Planning and Scheduling Special
Interest Group (PlanSIG 2006).

Sutton, R.; Precup, D.; and Singh, S. 1999. Between MDPs
and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence 112(1):181—
211.

Tanaka, F., and Yamamura, M. 2003. Multitask reinforce-
ment learning on the distribution of mdps. In Computational
Intelligence in Robotics and Automation, 2003. Proceed-
ings. 2003 IEEE International Symposium on, volume 3,
1108-1113. IEEE.

Taylor, M., and Stone, P. 2009. Transfer learning for rein-
forcement learning domains: A survey. The Journal of Ma-
chine Learning Research 10:1633-1685.

Thrun, S.; Schwartz, A.; et al. 1995. Finding structure in re-
inforcement learning. Advances in neural information pro-
cessing systems 385-392.

Wilson, A.; Fern, A.; Ray, S.; and Tadepalli, P. 2007.
Multi-task reinforcement learning: a hierarchical bayesian
approach. In Proceedings of the 24th international confer-
ence on Machine learning, 1015-1022. ACM.

Wilson, A.; Fern, A.; and Tadepalli, P. 2012. Transfer learn-
ing in sequential decision problems: A hierarchical bayesian

approach. In ICML 2011 Unsupervised and Transfer Learn-
ing Workshop. JMLR W&CP, this volume.

