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Abstract. We address the problem of devising vision-based feature ex-
traction for the purpose of localisation on resource constrained robots
that nonetheless require reasonably agile visual processing. We present
modifications to a state-of-the-art Feature Extraction Algorithm (FEA)
called Binary Robust Invariant Scalable Keypoints (BRISK) [8]. A key
aspect of our contribution is the combined use of BRISK0 and U-BRISK
as the FEA detector-descriptor pair for the purpose of localisation. We
present a novel scoring function to find optimal parameters for this FEA.
Also, we present two novel geometric matching constraints that serve to
remove invalid interest point matches, which is key to keeping computa-
tions tractable. This work is evaluated using images captured on the Nao
humanoid robot. In experiments, we show that the proposed procedure
outperforms a previously implemented state-of-the-art vision-based FEA
called 1D SURF (developed by the rUNSWift RoboCup SPL team), on
the basis of accuracy and generalisation performance. Our experiments
include data from indoor and outdoor environments, including a com-
parison to datasets such as based on Google Streetview.
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1 Introduction

The emergence of field robots that must persistently operate in dynamic envi-
ronments brings with it the need for localisation based on features that may not
have been explicitly engineered with the robot in mind. The issue is particularly
problematic for resource constrained robots that must adopt a low complex-
ity approach to computation. Generally robust localisation needs rich features
such as is available from Feature Extraction Algorithms (FEAs) which form a
crucial part of vision systems. FEAs are utilised in vision systems in order to
detect landmarks (also known as interest points) and match them between cor-
responding images. FEAs can therefore be used for tasks such as localisation and
are commonly used in systems such as automated-driving and underwater explo-
ration [6,13]. Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust
Features (SURF) are examples of FEAs that can be used for this task [3,5]. How-
ever, these algorithms have significant processing requirements and therefore are
not applicable to a wide variety of resource-constrained systems.



Many current vision-based localisation techniques utilise stereo-vision in or-
der to identify interest points [6, 12]. Many robot platforms, such as the Nao
humanoid robot used in the Standard Platform League of RoboCup [10], do not
allow for the possibility of utilising stereo vision.

In the RoboCup domain, a visual feature extraction technique termed 1D
SURF, has been developed by the rUNSWift team for the purpose of localising
Nao robots on the football pitch [2]. This method is computationally efficient but
could suffer from limited accuracy when generalising to different environments,
as will be illustrated in the sections to follow. To address these issues, feature
extraction algorithms are required that can both generate rich features and at
the same time be accurate and computationally efficient. We also focus on the
single camera case, which is the current setup for the Nao humanoid robot [1].

We present a computationally efficient and accurate FEA called BRISK0
- U-BRISK which is a variant of the Binary Robust Invariant Scalable Key-
points (BRISK) FEA [7]. We show that this FEA can detect features which can
be utilised for localising resource constrained mobile robots. We developed two
novel matching constraints as well as a novel scoring function which is used to
find the optimal parameters for FEAs. We present experiments verifying these
developments and also highlight the potential for outdoor navigation using these
techniques. We also outline a localisation routine incorporating the FEA as a
concluding remark.

2 Algorithm Overview

Our proposed architecture of a vision-based feature extraction algorithm, as
used in a localisation application, is shown in Figure 1. An image is captured
by the robot’s vision system (in this case, a Nao humanoid robot) and this
forms the input to our FEA. Our FEA then tries to match this image to a
set of stored images in an image bank. The stored images, along with their
corresponding location in the environment, are manually captured by the robot
prior to executing the algorithm. Descriptors for each stored image are computed
and stored by the robot. The stored image whose descriptors generate the largest
matching score with the input image descriptors is flagged as a match. The
matching score and the stored image’s corresponding geographic coordinates are
passed to a localisation module which then updates the robot’s position on a
map. The robot will always assume a stationary position when performing this
algorithm; this is analogous to a person gathering their bearings when lost in an
environment.
Throughout this paper a match between two images will be referred to as an
image match. A match between corresponding interest points between a pair of
images will be referred to as an interest point match.



Fig. 1. The FEA incorporated with a proposed localisation module to be used by a
resource constrained robot for localisation [9]

3 BRISK0 - U-BRISK

Binary Robust Invariant Scalable Keypoints (BRISK) has been recently devel-
oped by Leutenegger et al. [7]. Interest points are detected by computing a
Features from Accelerated Segment Test (FAST) [11] score for each pixel in the
image. If the pixel is above the pre-defined score threshold, then it is detected
as an interest point. A binary feature vector of length 512 bits is then generated
from some simple brightness comparison tests. Interest points are then matched
between image pairs by computing the Hamming distance between the feature
descriptors. This algorithm yields computational performance that betters SURF
by an order of magnitude in various domains [7].

Our contribution is a modification to this original BRISK method that is
more directly aimed at resource constrained robot systems with limited compu-
tation. This detector-descriptor variation is called BRISK0 - U-BRISK. BRISK0
- U-BRISK is based on SU-BRISK developed by Leutenegger et al. [7] and in-
cludes a modification to the image processing routine. This modification involves
processing only a subset, such as the upper 300 pixel rows, of the captured image
as this section contains more repeatable, static features such as ceiling lighting.
The lower and more dynamic, less repeatable section of the image is discarded.
Of course, this restriction may lose information. We compensate for this by in-
troducing additional tests for consistency, discussed in Section 8.

3.1 BRISK0 Detector

The detector module of the BRISK0 - U-BRISK FEA is responsible for detecting
the interest points. The interest points in the original BRISK implementation
are invariant to both scale and rotation. To achieve scale invariance, BRISK
utilises a scale-space consisting of an image pyramid whereby the lowest layer
of the pyramid is the original image and the higher layers of the pyramid are
down-sampled versions of the original image.

We discard the scale-space pyramid and only detect interest points on the first
octave corresponding to the original image, creating a detector termed BRISK0.



This is computationally efficient since down-sampled versions of the original
image are discarded as well as the continuous scale refinement procedure [7].
Once all of the interest points are detected, a 512 bit descriptor vector needs to
be computed for each of the interest points. This is achieved using the U-BRISK
descriptor.

3.2 U-BRISK Descriptor

In the original BRISK implementation, the descriptor vector is calculated by
initially generating a pre-defined sampling pattern to sample the neighborhood
surrounding the detected interest point k. The samples pi, are equally-spaced
in concentric circles surrounding the detected interest point [7]. The pattern
is then rotated based on an angle α that is generated from a set of gradient
calculations [7]. This is repeated for each interest point. A set of brightness
comparison tests are then used to generate the 512 bit descriptor vector which
is used in the matching procedure.

We do not rotate the sampling pattern, as in the original BRISK implemen-
tation, to create the U-BRISK descriptor. This prevents the FEA from being
rotation invariant but improves the FEA’s computational efficiency. It has been
shown that the above-mentioned detector-descriptor pair is robust to rotations
of up to 10◦ as well as scale changes of 10% or less [7]. This creates a more
computationally efficient FEA which is crucial for resource constrained robots.

3.3 Image Processing

In addition to utilising a computationally efficient FEA, we implemented further
optimisations. This includes optimising the 640 × 480 YUV image captured by
the Nao robot [1]. The image is first converted to gray scale. Only interest points
in the upper 300 pixels of the gray scale image are detected. These correspond
to interest points near the ceiling which are less prone to changing over time.
This implies that the lower portion of the captured image does not need to be
processed. This results in a significant increase in computational performance.

4 Matching Feature Descriptors

Once the descriptors are computed for a pair of images, it needs to be determined
whether or not the images overlap one another. We achieve this by utilising an
interest point descriptor matching technique. Two techniques are utilised which
include 2-NN Matching and Radius Matching.

2-NN Matching and Radius Matching both compute the Hamming or Eu-
clidean distance between a pair of interest point descriptors in feature space for
corresponding images, in order to determine whether or not the images overlap
one another. The Hamming distance is computed for BRISK-based descriptors,
whereas the Euclidean distance is computed for SURF-based descriptors.



As shown in Figure 1, interest points will be computed for the current im-
age and will be matched against interest points corresponding to each image
in the image bank. 2-NN Matching will compute the two closest interest point
matches, ipmatch1 and ipmatch2 respectively, from an image in the image bank to
an interest point ipcurrent in the current image. Only the closest matching inter-
est point ipmatch1 is paired with ipcurrent. However, both ipmatch1 and ipmatch2

are required to remove invalid matches by using the well-known 2−NN Ratio
constraint. Radius Matching will only assign an interest point match between
a pair of images if the distance between the interest point descriptors is below
a pre-defined threshold. An example of matched correspondences (indicated by
green lines) between two images is shown in Figure 2.

Fig. 2. Matching correspondences between two images

4.1 Matching Score

Once interest point matches are assigned to the current image, it needs to be
determined whether the current image and the image in the image bank overlap
one another. We achieve this by using a Matching Score (MS). The MS for a
pair of interest point descriptors is calculated by taking the inverse Hamming
or Euclidean distance between the descriptors [2, 4] as shown in Equation 1.
For both 2-NN and Radius Matching, the inverse distance between the interest
point descriptor ip1 in the current image and its closest match ip2 in an image
from the image bank are used to compute the MS. Thus, interest points that
are very similar will have a small distance corresponding to a high MS and vice
versa. The individual MS values for every interest point is summed to produce
the Image Matching Score (IMS) between a pair of images as shown in Equation
2. If the IMS is above a pre-defined threshold, then the images overlap and are
flagged as an image match.

MSip1,ip2 =
1

Dip1,ip2
(1)

IMSi1,i2 =
∑

ip1,ip2

MSip1,ip2 (2)

For example, in Figure 2, the MS for each corresponding interest point de-
scriptor pair (connected by a green line) is calculated. In the figure, there are 20



individual MS. These scores are summed together to produce the IMS between
these images. Since these images do indeed overlap one another, the matching
score between the images should be above the pre-defined IMS threshold, indi-
cating an image match.

5 Novel Matching Constraints

For both 2-NN and Radius matching, it is important to determine whether in-
terest point matches are indeed valid matches. Thus, we developed two novel
geometric matching constraints in an attempt to remove invalid interest point
matches. These constraints are termed the Angle and Distance constraints re-
spectively.

In order to determine whether an interest point match is valid, we present
an algorithm that initially places the images, containing each of the relevant
interest points, next to one another as shown in Figure 3 and Figure 4. The angle
constraint calculates the angle from the interest point in the left image to the
interest point in the right image. Through visual analysis, it has been determined
that the angle should be less than 10◦ in order for two interest points to match
one another1. As can be seen in Figure 3, α is larger than the pre-defined angle
threshold and therefore the interest points are invalid. β however, is smaller than
the threshold and therefore a valid match (shown in green) is found.

The distance constraint states that the number of image columns separating
two interest points in corresponding images should be the width of the image
plus a pre-defined threshold. We have assumed small changes in rotation and
scale which would again be applicable to the RoboCup domain. Through visual
analysis, a pre-defined threshold of 200 pixels has been chosen. As can be seen
in Figure 4, interest points that are within this threshold are flagged as valid
matches (shown in green).

Fig. 3. The angle constraint that has been
developed to remove invalid matches

Fig. 4. The distance constraint that has
been developed to remove invalid matches

6 Experimental Setup

We tested BRISK0 - U-BRISK using images captured from the upper camera of a
Nao humanoid robot [1]. The Nao Robot uses an ATOM Z530 1.6 GHz processor

1 This is very useful for the RoboCup domain as only small rotations are expected
whilst the robot is localising itself.



[1]. In addition to this, the Nao’s camera can process 30 frames per second.
Therefore, in order to process every frame, the FEA must be able to run in under
33ms on the Nao’s processor. All experimental image matching procedures were
evaluated on a computer with an Intel Core 2 Duo T6400 2.00GHz processor2.

In order to ensure that the BRISK0 - U-BRISK FEA exhibits the best over-
all performance, we tested it against the four FEAs mentioned in Section 7.
The three environments utilised for this testing procedure include a standard
RoboCup environment, a large hall and an office. Examples of images captured
in each of these environments are shown in Figure 5.

Fig. 5. Examples images from each of the environments used for the experiments

We generated in each environment a dataset of overlapping images and a
dataset of non-overlapping images for the experiments to follow. A pair of images
are considered to overlap one another if at least 50% of the first image visually
overlaps the second image. This has been manually performed to ensure that the
images do indeed overlap. Pairs of images with no overlap are referred to as non-
overlapping images. In total 200 images were captured over all three datasets at
scales varying over a range of 3 meters and orientations varying over the Nao
head’s full yaw range. This generated in total 2540 overlapping image pairs and
4290 non-overlapping image pairs.

7 Parameter Optimisation

In order to verify that BRISK0 - U-BRISK is a computationally efficient and ac-
curate FEA, we compared BRISK0 - U-BRISK to variations of well known FEAs.
The detector-descriptor FEAs compared include BRISK-BRISK, BRISK0-BRISK,
BRISK0-SURF2D and 1D SURF as implemented by the rUNSWift team.

Each of these FEAs has a set of parameters that need to be pre-defined in
order to accurately and efficiently match images. The parameters include the
Minimum Interest Point Detection Threshold (MIPDT) which is the threshold
above which a pixel is detected as an interest point; the Maximum Accepted

2 It must be noted that the computer’s processor is approximately 2.5 times faster than
the Nao’s processor. Therefore the computational times presented in this section are
faster than the real-time performance on the Nao.



Hamming Distance (MAHD) which is the maximum number of bits that can
differ between interest point descriptors for the interests points to be flagged as
a match; the Maximum Accepted Euclidean Distance (MAED) is the maximum
Euclidean distance below which two descriptors are flagged as a match.

The optimal parameters MIPDT ∗, MAHD∗ and MAED∗ for each FEA
are found using a grid search and a novel scoring function that we developed
for this purpose. 1D SURF uses the optimal parameter settings recommended
by the rUNSWift team [2] and therefore is left out in this experiment. To de-
termine the optimal parameters, 108 training images were captured at different
scales and orientations, generating a total of 1421 and 2808 overlapping and non-
overlapping image pairs respectively. These images are captured by a Nao Robot
that is placed on a RoboCup football pitch in a standard RoboCup environment.

The novel scoring function consists of a number of sub-functions which are
now detailed. The Single Image Score (SIS) function, shown in Equation 3, rep-
resents how well a pair of images i1, i2 overlap one another in a particular dataset
d for a particular Feature Extraction Algorithm FE and parameter values p.

SIS
FE,p
(i1,i2),d

= αf(ti1,i2) + (1− α)g(NVMi1,i2) 0 ≤ α ≤ 1 (3)

f(ti1,i2), shown in Equation 4, represents the timing score for a pair of images
based on the overall time (in milliseconds) taken to perform image processing,
detection, extraction and matching. tmax is defined as the largest time tabulated
for the current dataset d in milliseconds and normalises the score between 0 and
1. A large time is undesired and will result in a low matching score.

f(ti1,i2) =| log10(
0.9ti1,i2
tFE
max

+ 0.1) | f(ti1,i2) ∈ [0, 1] (4)

g(NVMi1,i2), shown in Equation 5, rewards a pair of images if they have a
large Number of Valid interest point Matches (NVM). Here, Mtotal is the total
number of interest point matches between a pair of images. ε can be set to any
value above 0 and has been pre-defined with a value of 0.1. The parameter α is
a weighting parameter and takes values between 0 and 1.

g(NVMi1,i2) =
NVMi1,i2

Mtotal,(i1,i2) + ε
g(NVMi1,i2) ∈ [0, 1] (5)

Once the SIS score has been calculated for each pair of images i1, i2, these
scores are then summed together for a particular set of parameter values p using
a specific FE in a particular dataset d. The resulting score is called the Multi-
Image Score (MIS) and is shown in Equation 6.

MISFE
p,d = βτ + (1− β)h(IZM) 0 ≤ β ≤ 1 (6)

The first term of the MIS score is the computation of the mean of all SIS
scores for a particular set of parameter values p, using a specific feature extrac-
tion algorithm FE, in a particular dataset d. This value is referred to as τ and
is shown in Equation 7. β is a weighting parameter between 0 and 1.



τ =

∑N
i1,i2=1,i1 6=i2

SIS
FE,p
(i1,i2),d

N
(7)

h(IZM), defined in Equation 8, is a scoring function that accounts for the
number of Image Zero Matches (IZM) for a particular set of parameter values p in
a particular dataset d using a specific FEA. An IZM is defined as a pair of images
containing no valid interest point matches. The denominator IZMFE

max represents
the maximum number of IZMs found for a particular parameter setting in a
particular dataset using a particular FEA. This function penalises parameter
settings that result in a large number of IZM s since IZM s should not be present
in a dataset of overlapping images.

h(IZM)FE
p,d =| log10(

0.9IZMFE
p

IZMFE
max

+ 0.1) | h(IZMFE
p ) ∈ [0, 1] (8)

The maximum MISFE
p,d is then found across all datasets and the correspond-

ing parameters p for each FEA are then chosen as the optimal parameters.
Using this parameter optimisation procedure, we show that BRISK0 - U-BRISK
produces the best overall image matching performance.

8 Experimental Results

8.1 Comparative Performance

We found that BRISK0 - U-BRISK produced the best overall performance whilst
utilising the Radius Matching technique as shown in Table 1. 1D SURF utilises
the RANSAC Matching technique as developed by the rUNSWift team [2]. As
seen in Table 1, in the worst case BRISK0 - U-BRISK can match an image pair
in 12.82 ms. This is within the 33 ms time constraint required to process a pair
of images for every image frame3. It should be noted that the times tabulated for
1D SURF utilise a sub-optimal image processing routine, which is not utilised
on the rUNSWift robots. The times for 1D SURF can therefore be improved
upon [2].

We generated a ROC curve in the standard RoboCup environment which
is shown in Figure 7. The ROC curve has been generated by utilising the IMS
as the threshold which is varied from the maximum IMS in the dataset to 0.
All overlapping image pairs with a threshold above IMS are classified as a True
Positive (TP) match. False Positive (FP) image pairs are generated by non-
overlapping images that are above the IMS threshold. In total we generated
1740 overlapping image pairs and 3480 non-overlapping image pairs in order to
calculate the ROC curve.

The percentage Area Under the ROC Curve (AUC) for BRISK0 - U-BRISK
is comparable with the other FEA methods as seen in the table. In addition, it

3 The 12.82ms generated by the computer has been converted to the approximate time
expected on the Nao’s processor. This time is still within the 33ms time constraint.



Table 1. The comparative performance for each of the FEAs in three different envi-
ronments

RoboCup Large Hall Office

FEA AUC Time AUC Time AUC Time
Algorithm (%) (ms) (%) (ms) (%) (ms)

BRISK0-BRISK 92.455 9.734 96.74 14.64 94.85 11.71
BRISK-BRISK 83.290 14.627 95.52 19.89 96.23 17.20

BRISK0-SURF2D 96.033 13.027 98.80 20.35 96.05 16.63
BRISK0-UBRISK 97.242 8.805 93.15 12.82 96.15 10.45

SURF 1D 74.039 13.301 90.84 14.03 92.33 14.14

is desirable to have a FP rate of 0 in order to prevent the robot from generating
incorrect image matches. Therefore we had to determine the maximum TP rate
that can be attained with a FP rate of 0, TPmax

FP=0, for BRISK0 - U-BRISK. As
can be seen in Figure 6 BRISK0 - U-BRISK performs well in all environments
attaining a minimum TPmax

FP=0 value of 67% in the RoboCup environment. In
addition to this, it out-performs the 1D SURF routine indicating that BRISK0
- U-BRISK has superior performance in each tested environment.

Robocup Large Hall Office
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Comparing the TP rate (for an FP rate = 0) 
for BRISK0 - U-BRISK and 1D SURF in all three environments

BRISK0 – U-BRISK 1D SURF
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Fig. 6. The TPmax
FP=0 values for

each of the three environments for
BRISK0 - U-BRISK

Fig. 7. A comparison of the ROC curves for
the RoboCup dataset using Radius Match-
ing

8.2 Varying Lighting Conditions

Since BRISK0 - U-BRISK has been chosen as the best overall FEA, we needed
to test it under varying conditions to determine its robustness. One such test
is under varying illumination. In total 5040 overlapping image pairs and 10008
non-overlapping image pairs were generated whilst switching off combinations
of electrical lights in a standard indoor RoboCup environment. The image scale
is fixed for this experiment. We found that the TPmax

FP=0 value decreased in poor
lighting conditions. A minimum TPmax

FP=0 value of 40% resulted in the poorest
lighting conditions; this implies that it is still possible to match image pairs
under varying illumination albeit with poorer matching capabilities.



8.3 Outdoor Navigation

A possible application of the BRISK0 - U-BRISK FEA is utilising it on a resource
constrained robot to perform navigation in an outdoor environment. Since the
algorithm is sensitive to rotation and scaling, this algorithm would be better
suited to fairly stable outdoor environments. Examples include a home robot
wandering around a yard, navigating around a housing complex or small suburb.
In order to test this application, a dataset has been generated using Google Street
View (GSV) images. If a resource-constrained robot can match its captured
image Irobot to images that Irobot overlaps in the GSV dataset, Igoogle, then in
principle the robot can localise itself.

For the experiment, 30 GSV images were downloaded at the same resolution
as that of a Nao robot. The images were captured at latitude: 55.94474 and
longitude: −3.18779. The GSV images were combined with images captured by
the Nao robot at the same location. This produced 210 overlapping image pairs
and 420 non-overlapping image pairs.

After running BRISK0 - U-BRISK FEA, it was found that the Nao’s images
can be matched to the corresponding GSV images that the Nao’s images over-
lap, albeit with a significant decrease in matching performance. An example of
interest point matches between Irobot and Igoogle can be seen in Figure 8. The
ROC curve generated an AUC value of 77.57%. The TPmax

FP=0 value is 39% which
implies that it is possible to match overlapping images whilst never matching
non-overlapping images. One of the main reasons for the decrease in perfor-
mance was due to buildings with many similar windows which caused matching
ambiguities.

Fig. 8. Matching correspondences, shown in green, between an image captured by the
Nao’s camera (left image) and the Google StreetView image (right image)

9 Conclusions

We have presented BRISK0 - U-BRISK which is a unique detector-descriptor
variation of the BRISK FEA and has not previously been utilised on a resource
constrained robot. We found that BRISK0 - U-BRISK produced the best overall
performance in terms of accuracy and generalisation to different environments.
It performs significantly better than 1D SURF on these metrics. BRISK0 - U-
BRISK is sensitive to changes in scale and rotation in return for computational
efficiency. This may limit the applications in which the algorithm can be utilised.
In harsh environments, the full power of the original BRISK implementation may
be required. This FEA can still match images under varying lighting conditions



albeit at a slight decrease in performance. It can potentially be used for some
forms of outdoor navigation as seen in the Google Street View experiment. We
are well aware that many sophisticated techniques already exist for outdoor
navigation and we do not expect our method to outdo others in terms of absolute
performance. However, many scenarios involving resource constrained robots
that operate in mixed environments, e.g., in the patio of a home or office, could
benefit from this capability. In current work, we are looking at implementing
this method as part of a particle filter localisation module shown in Figure 1.
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