
NaOISIS?: A 3-D Behavioural Simulator for the
NAO Humanoid Robot

Aris Valtazanos and Subramanian Ramamoorthy

School of Informatics
University of Edinburgh

Edinburgh EH8 9AB, United Kingdom
a.valtazanos@sms.ed.ac.uk, s.ramamoorthy@ed.ac.uk

Abstract. We present NaOISIS, a three-dimensional behavioural simu-
lator for the NAO humanoid robot, aimed at designing and testing phys-
ically plausible strategic behaviours for multi-agent soccer teams. NaOI-
SIS brings together features from both physical three-dimensional simu-
lators that model robot dynamics and interactions, and two-dimensional
environments that are used to design sophisticated team coordination
strategies, which are however difficult to implement in practice. To this
end, the focus of our design has been on the accurate modeling of the
simulated agents’ perceptual limitations and their compatibility with the
corresponding capabilities of the real NAO robot. The simulator features
presented in this paper suggest that NaOISIS can be used as a rapid pro-
totyping tool for implementing behavioural algorithms for the NAO, and
testing them in the context of matches between simulated agents.

Keywords: Robot Simulators, Robotic Soccer, Strategic Behaviours

1 Introduction

Software simulators are essential testing and debugging tools for large-scale
robotics applications, such as those encountered in the RoboCup domain. The
establishment of the NAO humanoid robot as the hardware platform for the
Standard Platform League (SPL) has been followed by the development of sev-
eral such environments, each focusing on different aspects of the complex robotic
soccer problem. Most simulators can be classified in one of two extreme cate-
gories; on the one hand are the implementations that attempt to generate a
full, three-dimensional, physical representation of the robot and its dynamics,
aimed at improving low-level sensorimotor skills. On the other hand lie the two-
dimensional, kinematics-only simulators, which are normally used in the devel-
opment of sophisticated strategic algorithms for multi-agent systems.

While the merit of each of these two extremes is indisputable, there has
been little work in developing intermediate-type, three-dimensional behavioural
simulators, which would bring together features from both categories. In broad

? NaOISIS is derived from “NAO” and the ancient Greek word “Noisis” (Nóησις),
which means cognition.



2 Aris Valtazanos, Subramanian Ramamoorthy

terms, a 3-D behavioural implementation would abstract away the complex,
low-level dynamics found in a physical simulator, while still restricting robots
to a realistic, partially observable, perspective view of their environment that
impacts their decision-making capabilities - the latter feature cannot be modeled
accurately in two dimensions.

In this paper, we present NaOISIS, a three-dimensional behavioural simula-
tor for the NAO humanoid robot developed in the MATLAB environment. As
outlined above, the simulator builds on the notion of decoupling motion dynam-
ics from the implementation of behavioural algorithms, while maintaining basic
physical features and properties (such as collisions between the robots, the ball
and the goalposts, and kicks of varying speed and directions). Furthermore, our
implementation focuses on the accurate modeling of NAO’s sensing capabili-
ties, by providing simulated cameras and sonar sensors that closely match the
real robot’s hardware specifications. Thus, it is possible to recreate a realistic
perception-action cycle, where the simulated agents must make decisions facing
the same perceptual constraints as a physical NAO robot.

In the context of developing physically realisable strategic behaviours, one
may argue that the abstraction of low-level motion dynamics is too strong a
concession to make. However, we claim that this may not necessarily be the case
for two reasons.

On the one hand, any experienced physical simulator user can testify that
it is extremely difficult to achieve a reliable one-to-one correspondence between
simulated motions and motions in the real world - any complex, non-trivial
motion must undergo significant transformations before being ported from a
simulator to the robot, and vice versa. This complication is magnified when
considering closed-loop motions (e.g. walking), where the interplay between the
robot’s sensors and the environment becomes even harder to simulate accurately.

On the other hand, this abstraction is supported by recent advances in the
SPL community, which have seen the development of robust walking engines for
the NAO robot; because of the standard platform nature of the competition,
it is possible to adopt these engines directly. For example, the latest version of
the Aldebaran NAO SDK [7] features a closed-loop implementation that accepts
commands of the form (dx, dy, dθ) and plans a path to move the robot to this
desired location. Through such interfaces, the decoupling of motion dynamics
from decision making and path planning arises naturally, so it is possible to
focus on strategic interactions instead.

In light of the above considerations, our proposed NaOISIS simulator serves
as a useful middle ground for developing new behavioural algorithms for the NAO
humanoid robot. The selection of MATLAB as a programming environment fa-
cilitates experimentation with several sophisticated machine learning, optimal
control, reinforcement learning and path planning techniques, implementations
of which are not available or are difficult to implement in other programming
languages. This choice does come at the expense of computational speed (com-
pared to other candidates such as C or C++), although this is not too restrictive.
In the following sections of this paper, we first briefly review other simulators
available for the NAO, and we then present the salient features of NaOISIS.



NaOISIS: A 3-D Behavioural Simulator for the NAO Humanoid Robot 3

Finally, we illustrate how NaOISIS can be used as both a debugging tool and a
simulator for full soccer matches, by presenting representative screen shots from
sample runs.

2 Related Work

SimSpark [3] is a general-purpose, open-source simulator, designed to accom-
modate a variety of robotic systems. A specific implementation tailored to the
NAO robots was adopted as the official simulator for the RoboCup 3-D Sim-
ulation League [11] in 2009. SimSpark features a physical model of the NAO
humanoid dynamics, while also modeling the limited field of view of the robot
and its perspective view of the environment. The simulator architecture is generic
enough so that different behavioural frameworks can plug-in and interact in the
context of a simulated match. However, despite being adequate for a simulated
match, the underlying dynamics do not yet faithfully resemble the dynamics of
a physical robot, as can be seen in videos from recent competitions [8][9]. Other
examples of general-purpose simulators used in the RoboCup domain include
USARSim [6], which has been mostly used in the context of the Rescue League
[12].

A similar NAO implementation exists for the popular proprietary Webots
environment [2], providing similar features as SimSpark. The Webots simula-
tor provides an interface for developing controllers in various programming lan-
guages (C, C++, Java, MATLAB). A controller plugging directly to the Alde-
baran NAO SDK (NaoQi) has also been developed, allowing the sharing of func-
tion calls. However, similar problems with the correspondence between real and
simulated dynamics exist in this simulator.

B-Human [5], the 2009 and 2010 winners of the RoboCup Standard Platform
League, have also released a custom-made simulation environment. This simula-
tor forms part of their software development kit (available for download online)
and is therefore mostly suited to their own custom cognitive architecture.

Perhaps the most widely used simulator in the RoboCup domain is the offi-
cial simulator of the 2-D Simulation League [4]. Although not designed specifi-
cally for the NAO robot, it can be used to simulate more complex, multi-agent
strategic algorithms, a subset of which could be potentially implemented on real
humanoids. However, the lack of a realistic sensor model makes it difficult to
achieve a close correspondence between real and simulated strategies.

3 The NaOISIS Simulator

In this section we present NaOISIS, a 3-D kinematic simulator aimed at creating
strategic behaviours for robot soccer teams. NaOISIS is written in MATLAB,
and is therefore suitable for use with a number of machine learning, path plan-
ning, reinforcement learning and optimal control toolboxes. The simulator can
also serve as a debugging tool for state estimation algorithms, by visualising and



4 Aris Valtazanos, Subramanian Ramamoorthy

comparing the robots’ egocentric beliefs to ground truth data. The NaOISIS
source code1 is available for download from [1].

3.1 Environment and Sensors

Field and Robots The main window of the NaOISIS simulator visualises the
soccer field where the robots interact (Figure 1). The dimensions of the field are
the same as those used of the RoboCup pitches (6x4m), with the goal posts,
central circle, penalty boxes, and penalty kick cross spots similarly scaled (see
[10] for a detailed specification). The ball is an orange sphere of a 3cm radius.
As in RoboCup, the two goal mouths are colour-coded yellow and blue to assist
in vision-based localisation.

(a) Top-down view. (b) Angular view.

Fig. 1. Soccer field.

The current version of NaOISIS supports two different robot versions. Figures
2(a)-2(b) shows the design which is visually closer to the real NAOs. Unfortu-
nately, this version takes longer to render2, so a simpler robot design, approxi-
mating the NAO through square patches, is often preferred (Figures 2(c)-2(d)).
However, it is worth noting that both versions are scaled to match the dimen-
sions of the real humanoid (see [7] for specification), so the difference between
them is mainly aesthetic.

As in the RoboCup competition, robots wear either a blue or a pink waist-
band, depending on the team they are playing for. The waistbands are also
included in both robot designs, and serve as an additional cue for visual robot
detection and distance estimation.

Cameras Given that our simulator focuses on developing plausible strategic
behaviours for humanoids, it is essential to endow the simulated robots with a

1 NaOISIS is released under a GPL (http://www.gnu.org/licenses/gpl.html) li-
cense.

2 We use the built-in OpenGL libraries provided in MATLAB for scene rendering, and
the camera toolbox to set the perspective view for the robots.



NaOISIS: A 3-D Behavioural Simulator for the NAO Humanoid Robot 5

(a) Simulated NAO
robot.

(b) Side view of Fig-
ure 2(a).

(c) Simplified de-
sign using square
patches.

(d) Side view of Fig-
ure 2(c).

Fig. 2. Soccer field.

Table 1. Simulated camera specification.

(a) Camera locations.

Camera x(cm) y (cm) z(cm)
Bottom 4.88 0.0 47.09
Top 5.39 0.0 53.72

(b) Head angle limits.

Rotation type Minimum Maximum
Yaw −35◦ +30◦

Pitch −120◦ +120◦

realistic sense of their environment. The simulated vision system of NaOISIS was
modeled on the cameras of the real NAO robot. Each simulated agent has access
to two cameras (Table 1(a)3) - a top one, allowing a more complete coverage of
the soccer environment, and a bottom one with an additional rotational offset
of 40◦ about the y-axis to allow tracking of nearer objects (e.g. the ball when
kicking). Additional constraints have been placed on the head yaw and pitch
angles of the robots (Table 1(b)). The cameras have a diagonal of 58◦, and
return 320x240 images in RGB format.

The simulated vision system is illustrated in Figure 3. Figure 3(a) shows an
example scene with two robots and a ball. Figures 3(b)-3(i) plot the perspective
view as seen by the bottom camera of the robot located on the halfway line, for
various head pitch and yaw combinations.

Sonar sensors Whereas vision is an important tool for ball detection and
localisation, sonar sensing is essential for more interactive tasks such as robot
avoidance. NaOISIS features a pair of simulated sonar sensors, also modeled on
the corresponding devices of the NAO humanoid. Each of these sensors has a
range from 0.15 to 0.75m (these values are modifiable). Moreover, there is an
option for adding varying levels of Gaussian - or other - noise to the sensor
readings, so as to reflect irregularities that would occur in a physical setting.

3 The origin is at the midpoint of the two feet, x-axis points to the front, y-axis left,
and z-axis up.



6 Aris Valtazanos, Subramanian Ramamoorthy

(a) Panoramic view of the scene.

(b) 30◦,−30◦ (c) 0◦,−30◦ (d) −50◦,−30◦ (e) −30◦,−20◦

(f) 0◦, 0◦ (g) 45◦,−10◦ (h) 15◦, 25◦ (i) −10◦, 20◦

Fig. 3. Field of view for various head angle combinations (yaw,pitch).

Figure 4 shows a visualisation of the joint range of a robot’s sonar sensors,
together with the technical specification.

3.2 Physical Interactions

Despite not modeling motion dynamics explicitly, NaOISIS offers a coarse simu-
lation of physical interactions between robots and their environment. The focus
is on modeling motions that form an essential part of a humanoid robot’s strat-
egy, such as translational/rotational movements and kicking actions. Collisions
between robots, balls, and goalposts are also considered. The current version of
the simulator does not account for more complex movements, such as getting up
from a fall or dives for goalkeepers.

Moving Each simulated agent has access to a simple motion engine which allows
it to navigate around the soccer field. The engine accepts commands of the form:

(dx, dy, dθ) (1)



NaOISIS: A 3-D Behavioural Simulator for the NAO Humanoid Robot 7

(a) Trapezoidal approximation of the joint
range of the left robot’s two sonar sensors.
Only objects within the range of the trapez-
ium are detected.

Sensor Angle Height Angular range
Left +19.48◦ 40cm 18◦

Right −19.48◦ 40cm 18◦

(b) Specification.

Fig. 4. Sonar sensor range visualisation and specification.

which correspond to the desired linear and angular displacement with respect
to the robot’s current coordinate frame. To ensure that the executed commands
are plausible, the following are also defined before the simulator is run:

– The maximum linear and angular velocities of each robot
– The spread of the error added to each command (which may vary along the

three dimensions of the motion)

Thus, if a robot requests to move by an amount that exceeds its capabilities, this
command will be scaled down and/or perturbed accordingly by the simulator.

Kicking Kicking actions are more difficult to model than translational and
rotational movements because they involve interactions between the robots and
the ball. Thus, a coarse approximation to the dynamics of these interactions is
required to achieve physically plausible kicks. NaOISIS currently supports four
different types of (non-directional) kicks:

– Left/right-footed straight kicks
– Left/right-footed side kicks, where the robot first extends the kicking foot

to the front and then performs a side motion.

At the start of the simulation, the maximum traveling distance for each kicking
type is defined. Then, when a robot wishes to kick the ball, it utilises a command
with the following information:



8 Aris Valtazanos, Subramanian Ramamoorthy

Kick type Min x (cm) Max x (cm) Min y (cm) Max y (cm)
Left straight 10 20 0 10
Right straight 10 20 -10 0
Left side 10 22 -15 0
Right side 10 22 0 15

Table 2. Admissible rectangles for each kicking type, defined in terms of the robot’s
coordinate frame (x-axis points to the front, y-axis to the left). For each kicking com-
mand, the ball will move only if it lies within the corresponding rectangle. The tips of
the left and right feet are at positions (10,5) and (10, -5) respectively.

– The type of the kick
– The desired speed of the kick, as a number between 0.0 and 1.0, where 1.0

corresponds to maximum allowed speed for the desired type of kick.

The precise trajectory of the ball after a kicking command depends on its position
and angle relative to the kicking foot. A ball will be affected by a kick only if it
lies within a rectangle defined with respect to the robot’s coordinate frame (Table
2). If the ball lies in the appropriate rectangle, the direction of its trajectory will
be the angle formed by the line connecting the ball and the tip of the robot’s
foot (see caption of Table 2), and the line which is normal to the foot on the
robot’s coordinate frame. Some special kicking cases are also accounted for; for
example, if the robot attempts a side kick from the “wrong” side, it will cause
a straight kick of reduced speed. Figure 5 shows several examples of kicking
commands and the trajectories they incur depending on the ball position.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Robot’s perspective (top) and resulting ball trajectories (bottom) for various
ball positions and kicking types. (a)-(d): right side kick. (b)-(e): right straight kick
with the ball positioned at an angle (but within the required rectangle). (c)-(e): right
straight kick - the ball is outside the kicking range so the resulting trajectory is null.



NaOISIS: A 3-D Behavioural Simulator for the NAO Humanoid Robot 9

Collision between robots and objects Collisions between robots and the
various objects in the soccer field are also coarsely modeled in the NaOISIS
simulator. The following types of collision are taken into account:

– Collision between two moving robots
– Collision between a moving and a static robot
– Collision between a moving robot and a goalpost
– Collision between a moving robot and a moving ball (as the result of a kick)
– (Accidental) collision between a moving robot and a static ball

For each robot, two different sets of rectangular bounds are considered: one
for its base and one for its torso. For the first three types of collision, the sim-
ulator checks for intersections between torso bounds and/or goalpost cylinders;
for the latter two, the torso bounds are replaced with the robot’s base bounds.
Whenever a ball is involved in a collision, the simulator also computes its ad-
justed trajectory (Figure 6).

(a) (b)

Fig. 6. Ball trajectory before (a) and after (b) collision with robot.

3.3 Information Exchange

Agents are also provided with a simple message-passing capability, which allows
them to communicate messages to their teammates. As NaOISIS is a discrete-
step simulator, message exchange occurs once every decision cycle. Each robot
updates a shared data structure with a list of relevant data, such as its self-
localisation belief and the observed position of the ball and/or the other robots.
The robots then communicate this structure to their teammates, who may use
it to adjust their decisions or to form cooperative strategies. As with physical
interactions, there is an option to add a non-zero probability of messages not
being delivered successfully.

3.4 Experiments and Testing

The simulator components described in the previous sections can be used to
design and test physically plausible behaviours and algorithms. Depending on
the user’s requirements, NaOISIS may be used to either debug such behaviours
and test their properties under varying conditions, or to simulate full soccer
matches between teams of autonomous agents.



10 Aris Valtazanos, Subramanian Ramamoorthy

Developing and debugging algorithms NaOISIS provides experimental sup-
port for a wide range of algorithmic domains, such as:

– Autonomous decision making under uncertainty
– Path planning and dynamic obstacle avoidance
– Reinforcement learning
– Belief estimation, information filtering and sensor fusion
– Vision-based localisation
– Multi-agent coordination

In most of these domains, it is important to be able to compare the agent’s
egocentric beliefs and estimates to ground-truth data. NaOISIS provides a set of
debugging tools that can be used to visualise this comparison. Figure 7 provides
a simple illustration of this functionality in the context of observation-based
estimation of the opponent’s location.

(a) Initial belief - no infor-
mation available.

(b) Revised belief based on
visual estimate.

(c) Further revision using
sonar estimate.

Fig. 7. Egocentric beliefs of the right-hand side robot on the location of its opponent.
The belief at each stage is indicated by the blue circle.

Simulating Full Matches The soccer match mode of NaOISIS provides ad-
ditional functionalities that help simulate full soccer matches between teams of
autonomous agents. Most of these are concerned with the position of the ball at
the various stages of the game, so as to determine if a goal has been scored or
if the ball has crossed the field bounds. In each of these cases, the ball and the
robots are repositioned and the score is updated accordingly.

The collision modeling functionality discussed in Section 3.2 is used to deter-
mine whether a robot should be penalised for a certain period of time. Whenever
a robot is deemed “responsible” for a collision by the simulator, it is placed on
the sideline for an interval of time before it is allowed to re-enter the game.
Responsibility is judged based on the relative speeds of the colliding robots, and
the location of the ball. Furthermore, if a robot does not move for a long period
of time while being close to the ball (and thus preventing other robots from
reaching it), it is also penalised. Since robot falls are not modeled in the cur-
rent version of the simulator, penalty shootouts would be highly disfavourable to



NaOISIS: A 3-D Behavioural Simulator for the NAO Humanoid Robot 11

goalkeepers, and as such they have also been omitted. This will be implemented
as an extension in future versions of NaOISIS.

The debug and match modes of NaOISIS are not mutually exclusive; it is
possible to plot robot beliefs and other relevant information in the match version
as well. Moreover, since the match is carried out at discrete perception-decision-
action states, it is possible to record snapshots of the soccer field at various
stages. These snapshots can then be synthesised as a movie or used otherwise for
evaluation. The frames from the robots’ camera feeds can also be recorded and
used to debug information processing and state estimation algorithms. Figure 8
shows screenshots from a soccer match betwen two robots.

4 Conclusion

We have presented NaOISIS, a three-dimensional behavioural simulator for the
NAO humanoid robot. NaOISIS differs from traditional physics-based simulators
in abstracting away most of the low-level dynamics of the humanoid, while still
modeling salient physical interactions such as kicking actions and inter-robot
collisions. Thus, the simulator supports the design of more realistic strategies
than it is possible with simpler, two-dimensional environments. The current ver-
sion of NaOISIS can be used to both debug behavioural algorithms in a rapid
prototyping environment, and test them in soccer matches between simulated
agents; moreover, it can be integrated with several machine learning, path plan-
ning and reinforcement learning that are available in MATLAB. Future versions
of NaOISIS will concentrate on the coarse modeling of further physical interac-
tions, such as robot falls and dives, while also providing a more standardised
environment for implementing decision making algorithms.

References

1. NaOISIS Source Code, http://homepages.inf.ed.ac.uk/s0566900/naoisis.html
2. NaoQi for Webots, http://www.cyberbotics.com/nao/
3. SimSpark simulator, http://simspark.sourceforge.net/
4. The RoboCup 2D Soccer Simulator, http://sourceforge.net/projects/sserver/
5. B-Human Standard Platform League Team, http://www.b-human.de/en/
6. USARSim, http://sourceforge.net/projects/usarsim/
7. NAO v1.10 User’s Guide, http://academics.aldebaran-robotics.com/
8. RoboCup 2010 3D Simulation League - Semifinal second extra half, http://www.

youtube.com/watch?v=MNCObp1TvNE

9. RoboCup 2010 3D Simulation League - Final first half, http://www.youtube.com/
watch?v=EmMt_mlpvWE

10. RoboCup Standard Platform League Official Rule Book, http://www.tzi.de/spl/
pub/Website/Downloads/Rules2010.pdf

11. The RoboCup Soccer Simulation League, http://wiki.robocup.org/wiki/

Soccer_Simulation_League

12. The RoboCup Rescue League, http://www.robocuprescue.org/



12 Aris Valtazanos, Subramanian Ramamoorthy

Fig. 8. Simulated soccer game. Top to bottom, left to right - Odd rows: field screenshots
showing the positions of the robots and the ball at various stages. Even rows: the
corresponding field of view of the pink robot (initially on the right hand side).


