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Abstract— Many multi-robot decision problems present au-
tonomous agents with a dual challenge: the accurate egocentric
estimation of the state and strategy of their adversaries, in the
face of physical limitations and sensory uncertainty. Although
these are clearly difficult constraints on the capabilities of an
autonomous robot, this is also an opportunity for exploiting
the corresponding limitations of the adversary. In this paper,
we propose a decision making framework for physically con-
strained multi-robot games, using a combination of probabilistic
and game-theoretic tools. We first present the Reachable Set
Particle Filter, an adversary state estimation algorithm com-
bining data-driven approximation with dynamical constraints.
Then, we use game-theoretic notions to formulate a strategy
estimation framework that progressively learns and exploits the
adversary’s behaviour. We evaluate our framework in a series
of robotic soccer games between robots with varying sensing
and strategic capabilities. Our results demonstrate that the
combination of probabilistic modeling and strategic reasoning
leads to significant improvements in performance robustness,
while flexibly adapting to dynamic adversaries.

I. INTRODUCTION

Even as the Autonomous Robotics community pushes the
frontier of what is possible by a robot requiring decreasingly
less guidance from any external sources, we realise that some
of the most exciting opportunities are to be found in a middle
ground where an autonomous robot interacts with other
agents - including people - in a mixed-initiative or social
setting. However, we also find that such interactive behaviour
- involving multiple objectives, constraints, ambiguity and
incompleteness of knowledge - can be even more challenging
than the fully autonomous scenario. Part of the reason
for this is the difficulty of modeling sophisticated strategic
interactions in a way that is both principled and practicable.

When these conceptual difficulties are coupled with more
pragmatic considerations of hardware and processing power
limitations, we find that even seemingly simple “intelli-
gent” moves, such as passes and dribbles in a robotic
soccer game, are scarce and often require explicit hand
crafting of everything but a few open parameters. In such
domains, autonomous robots must face uncertainty in their
own egocentric beliefs, incompleteness and uncertainty in
their knowledge of the strategies of their adversaries and
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physical limitations such as a very limited field of view using
a mediocre camera. One could perhaps overcome hardware
issues by investing in better equipment, but we believe that
the research challenges are most pertinent at the intersection
of these various concerns, which is surely what the personal
and service robot of the near future must come to terms with.

Our focus in this paper is on the problem of robust
strategic decision making in adversarial games with physical
limitations in action and perception. We propose an approach
to devising strategic interactive behaviours in autonomous
robots, illustrated using the robotic soccer domain. We also
argue that constraints need not be viewed only as a feature
to be overcome or eliminated. In our domain, successful
interactive behaviour often requires the exploitation of these
constraints, leading to interesting forms of motion strategies.
We develop a decision-making framework for physical multi-
robot games, based on the following high level concepts:

• Intent inference: In the absence of a precise model
of its adversary’s strategic behaviour, a robot may ap-
proximate it using a finite collection of intent templates,
each modeling a single coarse behavioural class. These
templates are combined probabilistically into a single
distribution that predicts the (re)actions of the adversary.

• Escape strategies: In a noisy, physically embodied, par-
tially observable environment, robots may benefit from
exploiting the observability limitations of their adver-
saries. We refer to such moves as escape strategies, as
they seek to reduce the amount of information available
to the adversaries and influence their decisions.

• Probabilistic adversary state estimation: Robots re-
quire a mechanism for ‘filtering’ their noisy observa-
tions of the adversary. We propose the Reachable Set
Particle Filter, a probabilistic state estimation algorithm
combining a formal characterisation of the dynamical
constraints of a robotic system, with a data-driven
estimation procedure. A reachable set characterises, for
all instances of a class of strategies, the states that
might be reached at some future point. Thus, it forms
a powerful addition to the particle filter which, in the
basic formulation, does not account for such constraints.

• Regret minimisation: In realistic games with uncer-
tainty, robots can achieve the full benefit of strategic
modeling only if they adapt to and learn from the
actions of their adversaries. We use the notion of regret
minimisation to infer online the effects of probabilisti-
cally selected intent templates, and adjust their distri-
butions to reward retrospectively optimal strategies.



Our proposed framework brings together ideas from prob-
abilistic modeling, game theory, and strategic reasoning,
allowing for online decision making in adversarial robotic
environments with physical constraints.

II. RELATED WORK
The particle filter [9] has become the popular tool for

state estimation in uncertain environments, due to the ability
to flexibly model arbitrary probability distributions. These
algorithms have been used to estimate adversarial models
from experience in strategic games such as poker [2]. A
related concept is found in empirical games [10], where one
attempts to extract strategic profiles in a data-driven fashion.

Interactive Partially Observable Markov Decision Pro-
cesses (I-POMDPs) [8] were proposed as an extension to
the popular POMDP framework [11] to incorporate strategic
adversarial models. The Interactive Particle Filter [5] builds
on this formalism by probabilistically estimating beliefs over
other agents’ intentions, whereas [15] considers adversarial
models in complex problems such as money laundering.
Extending such ideas to physically embodied robotics, a
much more messy domain, is a current challenge.

Plan recognition is concerned with the classification of an
agent’s actions into a pre-defined library of plans. In [1], a
decision tree is used to process multi-featured observations
for a simulated soccer game. Recognition algorithms based
on particle filtering [4] and velocity tracking [13] have been
proposed, although they do not consider strategic uncertainty.
Probabilistic plan recognition [6] deals with actions for
hierarchically decomposed plans in adversarial domains.

Our work shares a similar motivation with particle filters,
I-POMDPs, and plan recognition, but seeks to extend them
in two ways. First, we decouple the uncertainty arising from
noisy sensing from strategic uncertainty. Sensing uncertainty
is handled by the Reachable Set Particle Filter, which uses
the adversary’s dynamics as a prior for data-driven estima-
tion, whereas strategic uncertainty is modeled through a com-
bination of intent filtering and regret minimisation. Second,
we augment intent filtering with strategic concepts suitable
for physical adversarial games, such as escape strategies.

Hybrid systems provide a close link between optimal
control and game theory. A notable line of work mod-
els challenging problems, such as aircraft collision avoid-
ance, as pursuit-evasion (PE) games between adversaries
[18]. Probabilistic PE games have also been considered to
model reactive adversarial games between unmanned ve-
hicles [19]. Visibility-based PE with limited field of view
[7] is compatible with our notion of escape strategies,
though the focus there is mostly on space coverage against
non-strategic adversaries. More recent approaches propose
tractable sampling-based solutions [12] to formally defined
PE games, or seek Nash equilibria in such contexts [3].

Many multi-robot games require agents to vary their
strategies over time, so they cannot be reduced to PE games
that assume fixed strategies. Furthermore, full modeling of
sensing limitations is often beyond the scope of the above
mentioned PE literature.

Regret minimisation [16] is a game-theoretic method to
determine the utility of actions against adversaries with

unknown strategies. A popular application of regret minimi-
sation is the bandit problem [17], which models decision
making as a set of actions of initially unknown utility. We
extend this concept for multi-robot games, where uncertainty
and observability limitations pose a major constraint.

III. METHOD

We are interested in the problem of decision making by an
autonomous robot with physical limitations. Such limitations
include: limited velocities (including, perhaps, nonholon-
omy), noisy locomotion, noisy perception with limited sens-
ing resources, limited methods of object manipulation (e.g.
kicking a ball to a specific point). We develop a framework
for the robotic soccer domain, as it features the above
types of uncertainty, together with strategic adversaries of
unknown capabilities. However, the underlying ideas could
be extended to other general forms of interactions.

A. Preliminaries

1) Notation: We consider a game involving a total of N
autonomous robots; let ri refer to the i-th robot, i = 1..N .
Furthermore, let s ∼ D be an abbreviation for drawing
a sample s from a set or distribution D, let rand be
a randomly generated number between 0 and 1, and let
dist(P1, P2) denote the Euclidean distance between points
P1 and P2 . We consider discrete time, continuous space
decisions (at time instants t), though in principle our frame-
work can be extended to accommodate continuous time.

2) State Estimation: As most autonomous robots are
restricted to egocentric sensing, they compute the states of
the other robots relative to their own coordinate frame. For
rj , the collection of relative states of all other robots at time
t gives the set of robot beliefs:

RBj,t = { 〈xij , yij , θij , cij〉t | i = 1..N, i 6= j } (1)

where 〈xij , yij , θij〉t denotes the relative state of ri as
computed by robot j, in terms of planar coordinates x, y
and orientation θ, and 0 ≤ cij ≤ 1 is a weight representing
the robot’s confidence on the belief. At the simplest level, the
position component 〈xij , yij〉 of a belief is equal to a raw sen-
sor reading, whereas the orientation is inferred from a history
of positions (see Section III-A.3). Correspondingly, relative
soccer ball beliefs are given by BBj,t = 〈xBj , yBj , cBj 〉t. If
the ball or a robot is visible at time t, its confidence weight
is set to 1, otherwise it is set to the weight of time t − 1
multiplied by a decay constant δc, 0 ≤ δc ≤ 1.

3) Orientation Estimation: Robots endowed with some
sensing mechanism (vision and/or sonar) may approximate
the relative planar positions of their adversaries. Unfortu-
nately, this approach does not extend to the relative ori-
entations1. Instead, we use the autoregressive procedure
INFERORIENTATION (Appendix A) to compute orientations
based on past beliefs. The algorithm infers an adversary’s
orientation by relating the flow of its motion to the position
of the ball and the other robots.

1Unless sophisticated visual recognition algorithms are used, whose
complexity would be prohibitive for the real-time decision making problems
we are considering, and the kinds of robots we are targeting this at.



B. The Reachable Set Particle Filter

We have developed a variant of the original particle filter
algorithm [9] for autonomous robots, which we term Reach-
able Set Particle Filter (RSPF). The main innovation is the
definition of the proposal distribution for particle updates in
terms of backward reachable sets [18]. If the dynamics of a
system of robots are known, together with their correspond-
ing velocity bounds, then it is possible to compute future
sets of states up to a - potentially infinite - time horizon.
The worst-case backward reachable set BRS for ri relative
to rj (assuming both robots are moving with their maximum
linear velocities vi and vj) is obtained through the Hamilton-
Jacobi-Isaacs Partial Differential Equation:

∂v(q, t)

∂t
+ min[0, H(q,∇v(q, t))] = 0, v(q, 0) = g(q), (2)

with Hamiltonian

H(q, p) = max
a∈Ui

min
b∈Uj

p · f(q, a, b, vi, vj), (3)

where q = 〈xij , yij , θij〉, f(q, a, b, vi, vj) = q̇ denotes the rela-
tive system dynamics, g(q) is a scalar function representing

the reachable set at t = 0 (e.g. g(q) =
√
xij

2
+ yij

2 − C,
with C constant), and Ui,Uj are the sets of permissible
angular velocities. The HJI PDE is solved backwards in
time until convergence. For a more detailed discussion on
the convergence properties of this method, see [18].

We assume that all robots have similar velocity constraints,
so we compute a single reachable set BRS up to a horizon of
1s. We now show how BRS can be used in particle filtering.

Each robot rj maintains a separate particle filter for every
other robot ri. In each case, a set of P particles and weights:

RPij = {〈pk, pwk〉 | k = 1..P} (4)

is maintained, where every pk = 〈x̃ij , ỹij , θ̃ij〉 is a state
hypothesis and pwk is its associated weight, such that∑P
k=1 pwk = 1. Furthermore, we define RMi

j as a second
set of Q particles over the potential one-step reactions of ri:

RMi
j = {〈mk,mwk〉|mk = 〈d̃x, d̃y, d̃θ〉, k = 1..Q}, (5)

which are the potential moves ri can take in a single
discrete time step. Each set RMi

j is initialised randomly.
The candidate move at time t is m̄ = 〈〈xij,t, yij,t〉 −
〈xij,t−1, yij,t−1〉, INFERORIENTATION(RBij ,BBj)〉. The
weight m̄w of a candidate is defined using BRS , so that:

m̄w =

{
1/Q, m̄ ∈ BRS
0, m̄ 6∈ BRS (6)

The oldest particle 〈mo,mwo〉 in RMi
j is replaced by

〈m̄, m̄w〉. Following the replacement, all weights are nor-
malised so that they add to 1. Thus, RMi

j essentially acts as
a predictive distribution for ri, by combining both egocentric
estimates and ground truth dynamics from the reachable set.

To complete our formulation, we set RMi
j as the proposal

distribution for the prediction step of RPij . Then, at time t:

pk ← pk + m̃, 〈m̃, m̃w〉 ∼ RMi
j , k = 1..P (7)

The remaining steps are similar to the algorithm described
in [9]. The likelihood distributions for the correction step
should be suited to the physical limitations of the robot’s
sensors (e.g. sonar range). The state component of a belief
is revised as the weighted sum of its associated particles:

〈xij , yij , θij〉 =

P∑
k=0

pk · pwk (8)

C. Action Types, Actions, and Strategic Modes

Every robot has access to the following set of parameter-
isable action types:

AT = {MOVE(dx, dy, dθ), KICK(kt, ks), SCAN(dy, dp)}
(9)

MOVE(dx, dy, dθ) corresponds to a desired displacement and
turn; KICK(kt, ks) executes a kick of a given type kt ∈
{left straight, right straight, left side, right side} and
speed factor 0 < ks ≤ 1, where ks = 1 corresponds to
full speed; and SCAN(dy, dp) alters the robot’s head yaw
and pitch by dy and dp respectively, to allow scanning of
a different region of the environment. An action α is an
instantiation of an action type ατ , e.g. MOVE(0.1, 0.0, 0.0).

In order to cluster similar behaviours together, we also
define a set of roles, or strategic modes:

M− = {KICKER, DEFENDER} (10)

A KICKER tries to go to the ball and kick it, with additional
constraints for adversary avoidance. The DEFENDER mode
is triggered when a robot cannot see the ball but is near an
adversary, so it instead attempts to block its path.

The mode µ and action type ατ for rj at time t is chosen
deterministically using a decision tree, based on the actual
beliefs RBj,t and BBj,t. We label this procedure:

〈ατt, µt〉 ← SELECTACTTMODE(RBj,t,BBj,t). (11)

D. Intent Inference

Robots should be able to distinguish between “intelligent”
and “non-intelligent” adversaries, and adapt their behaviour
accordingly. An exhaustive search over all strategies avail-
able to a robot and its adversary would be both intractable
and inflexible. Instead, we propose and define an intent
filter, which is used to classify the observed movements of
the adversary into coarse classes of strategic behaviours. The
intent filter for the adversary ri with respect to rj is a set

Iij = { 〈Ik, imk, iwk〉 | k = 1..K } (12)

where Ik is one of K predefined intent templates, imk is
the next move currently predicted by Ik for rj , and iwk is
its associated weight. In our robotic soccer model, we define
the following coarse intent templates:

I− = {STATIC,BALL, PURSUE, PREDMOVE} (13)

where STATIC predicts that ri will not move at the next
time step, BALL predicts a movement towards the ball,
PURSUE predicts a movement towards rj , and PREDMOVE
sets the next move to a random weighted sample fromRMi

j .
Note that these templates are both logic-based (e.g. STATIC)



and data-driven (e.g. PREDMOVE). For every logic-based
template Ik, the next move imk is predicted deterministi-
cally (e.g. for BALL, the relative position of the ball to ri
determines how the adversary will move towards it).

Moreover, the strategy of ri may vary depending on the
mode µt chosen by rj at t (e.g. ri may be more aggressive
if it determines that rj is playing defensively). We define a
separate intent filter Iij,µ for every mode µ, each with its
own distribution over the intent templates. Through such
a decomposition, intent inference becomes a probabilistic
game where rj selects a behavioural mode and action, in
response to an action selected independently by ri. Thus,
even if the modes and intent templates do not exactly
correspond to the true strategy of ri, they can help achieve
a good approximation that can be refined over time.

E. Strategic escape

Modes and intent templates can be extended to include
strategies that exploit observability constraints. We call this
class of behaviours escape strategies, as they strive to
move information out of the adversary’s sensing range. To
support the selection of such strategies, we first compute the
observability bounds of ri with respect to rj as the set:

OBij ≡ { vbsij , sbsij } ← OBSERVBDS(RBij,t,BB
i
j,t) (14)

where vbsij and sbsij are trapezoidal approximations to the
vision and sonar sensing ranges of ri, respectively, and vbsij
and sbsij are their corresponding barycentres.

Examples of escape actions in robotic soccer would be:
• Kick the ball so that the resulting trajectory maximises

the distance from the adversary’s field of view. Given a
set of m candidate ball trajectories (of varying sizes),
BT .

= { βm ≡ {βmk ≡ 〈xbmk, ybmk〉 | k = 1..|βm|} },
the optimal ball escape trajectory β̂ is given by:

β̂ = argmax
βm∈BT

1

|βm|

|βm|∑
k=1

dist(βmk, vbsij) (15)

• Move so that the resulting path trajectory maximises the
distance from the adversary’s sonar sensing range. As
above, given a set of n candidate robot trajectories RT ,
the optimal robot escape trajectory ρ̂ is:

ρ̂ = argmax
ρn∈RT

1

|ρn|

|ρn|∑
k=1

dist(ρnk, sbsij) (16)

Finally, (10) and (13) can be augmented to become:

M+ = {KICKER, DEFENDER, EXPLOITER}, (17)

I+ = {STATIC,BALL, PURSUE, PREDMOVE, ESCAPE}.
(18)

An EXPLOITER is endowed with the capability of probabilis-
tically selecting escape trajectories. This is modeled in the
ESCAPE template, which represents the utility of choosing an
escape strategy at a given time. This feature is incorporated
into the overall action selection procedure (Algorithm 1).

Algorithm 1 Optimal Action Selection
1: OPTACTION(j,RBj,t,BBj,t, ατt, µt, Ij)
2: Input: Robot j, robot/ball beliefs RBj,t/BBj,t, action

type ατt, strategic mode µt, current intent filters Ij
3: i← FINDNEARESTADVERSARYINDEX
4: 〈Ii, imi〉 ∼ Iij {sample template and predicted move of
ri from intent filter Iij , based on weights iw}

5: RBij,t ← RB
i
j,t + imi {incorporate prediction}

6: OBij,t ← OBSERVBDS(RBij,t,BBj,t) {Eq. 14}
7: if ατt == MOVE(·, ·, ·) or ατt == KICK(·, ·) then
8: if Ii == ESCAPE then
9: T ← ESCAPETS(RBij,t,BBj,t) {find candidate

escape trajectories for current beliefs}
10: τ̂ = OPTESCAPE(T ,OBij,t) {Eq. 16 or 15}
11: else
12: T ← NORMTRAJ(RBij,t,BBj,t)
13: τ̂ = OPTNORM(RT ) {no escape heuristic}
14: end if
15: αt = MOVE(dx, dy, dθ) ← CHOOSEMOVE(τ̂) or

αt = KICK(kt, ks) ← CHOOSEKICK(τ̂) {find
path/move or kick type/speed for chosen trajectory}

16: else
17: αt = SCAN(dy, dp) ← CHOOSESCAN(BBj,t) {ball

not visible, attempt to retrack}
18: end if
19: return αt

F. Regret minimisation

We now consider online learning of the intent filter
weights as a means of adapting to the adversary (Algorithm
2). At time t, each intent template Ik predicts a move imk

(Eq. 12); however, a robot probabilistically picks just one
template and acts based on its prediction. Then, at t+1, regret
minimisation assesses the correctness of all predictions, and
modifies their weights accordingly.

Algorithm 2 Intent Regret Minimisation
1: REGMIN(I,t,µt−1,j)
2: Input: Intent templates I, time t, strategic mode µ ≡
µt−1 at time t− 1, estimating robot index j; ε ← 0.05

3: for i = 1 to N ; i 6= j do
4: WA = { ε− 2(k − 1)ε/(|I| − 1) | k = 1..|I| }

{weight adjustments, +ε...− ε}
5: Rs← ∅ {regrets}
6: for k = 1 to |I| do
7: 〈I, im, iw〉 ← Iij,µ[k]
8: PP ← im+ 〈xij , yij〉t−1 {predicted position}
9: Rs[k]← dist(PP, 〈xij , yij〉t)

{regret ∝ |predicted position - actual position|}
10: end for
11: Rs← SORT(Rs) {in ascending order}
12: for k = 1 to |I| do
13: Iij,µ[Rs[k]].iw ← Iij,µ[Rs[k]].iw +WA[k]
14: end for
15: end for
16: NORMALISEWEIGHTS {so they add to 1}
17: return Ij,µ



G. Summary

Algorithm 3 summarises the overall decision making pro-
cedure, unifying all components and ideas described so far.

Algorithm 3 Complete Decision Making Algorithm
1: DECMAKER(I,M,rm,IW ,j)
2: Input: Intent templates I, strategic modes M, boolean
rm for regret minimisation, initial intent template weight
distributions IW , estimating robot index j ; t← 0

3: Ij ← INITIALISEIFS(I, IW) {Initialise intent filters}
4: while TRUE do
5: SENSEWORLD {get latest sensor data}
6: 〈RBj,t,RPj ,RMj〉 ← RSPF {c.f. Sec. III-B}
7: if rm == TRUE and t > 0 then
8: Ij,µt−1

← REGMIN(I,ld,t,µt−1,j) {Alg. 2}
9: end if

10: 〈ατt, µt〉 ← SELECTACTTMODE(RBj,t,BBj,t)
11: It ∼ {〈Ik, imk, iwk〉 ← Ij,µt

[k] |k = 1..|I|} {Select
intent filters based on current weights iwk}

12: αt ← OPTACTION(j,RBj,t,BBj,t, ατt, µt, It)
13: EXECUTEACTION(αt)
14: t← t+ 1
15: end while

IV. RESULTS

We evaluate our algorithms on a simulated robotic soccer
environment with realistic physical constraints. Figure 1
shows a panoramic view of the soccer field, along with the
associated field of view and sonar range. Constraints have
been placed on the allowed magnitudes of MOVE and KICK
commands. Distances to objects falling in the sonar range
are subjected to Gaussian noise with a mean equal to its
true magnitude and a standard deviation of 1. False positives
occur when a robot is near field edges or goal posts.

(a) Panoramic view of the field and the robots.

(b) Perspective field of view (c) Sonar sensing range

Fig. 1. Soccer simulator environment.

A. Reachable Set Particle Filter

We first compare the Reachable Set Particle Filter (RSPF)
against a number of other state estimation variants:

• No filtering (NF): the extracted (noisy) sensory ob-
servations are converted directly to beliefs, without
additional motion models or observation distributions.

• Simple Particle Filter (SPF): This is a particle filter al-
gorithm without the additional reachable set constraint.
In effect, Eq. 6 is modified so that all candidate particles
are assigned a probability of 1/Q.

• Intent-based state estimation (IBSE): This procedure
estimates both a robot’s state and intent in one pass. The
probabilistic motion model of Section III-B is replaced
with an intention-based distribution similar to Eq. 12.
The algorithm attempts to map intents to adversary
observations directly, without explicitly taking into ac-
count motion constraints and observation likelihoods.

We evaluate the algorithms on soccer games between two
robots, each using its sonar to estimate the adversary’s state.
In the initial configuration (Figure 1(a)), robots are outwith
the sensing range of their adversaries. Agents execute a
simple algorithm to move towards the ball, though their
exact strategy is not important at this point. For each filtering
algorithm f , we compute the error as the mean distance of
rj’s egocentric estimates, xi,fj,t, to the true location of ri, x̄it:

µDTL(f) =
1

T

T∑
t=1

√
xi,fj,t − x̄it

2

. (19)

with σDTL being the corresponding standard deviation.
For the RSPF algorithm, the backward reachable set BRS
(Section III-B) was computed with respect to the relative
dynamics of the two robots, using Mitchell’s level set toolbox
[14]. Figure 2 provides a visualisation of this set, along with
the corresponding reaction and state particle distributions,
illustrating the utility of the reachable set as a filtering tool.

Method (f) µDTL(f) σDTL(f) Error gain wrt. NF
NF 14.79 cm 1.846 -
SPF 17.63 cm 1.953 -19.2%
RSPF 13.76 cm 1.996 +6.96%
IBSE 15.16 cm 2.544 -2.5%

TABLE I
MEAN ERROR PER FILTERING METHOD

Table I summarises the results, as averaged over 20 trials.
At a first glance, the 6.96% gain obtained when using
RSPF instead of no filtering (NF) may seem small, but
one must acknowledge the complexity of the task: robots
must estimate the state of dynamic adversaries whose exact
behavioural model is unknown, in the face of noisy sensor
data. Moreover, any improvement in rejecting spurious tra-
jectories has a substantial impact on the following steps that
attempt to learn responses on top of this information. The
performance of RSPF relative to IBSE supports our claim
that in games characterised by strategic and sensory noise,
state and strategy estimation should be decoupled.

B. Strategic decision making

1) Preliminaries: We now fix the RSPF as the state esti-
mation algorithm and we evaluate different permutations of



(a) Reachable set - side view. (b) Reachable set - front view. (c) One-step reaction particles: valid
(black) and discarded particles (red)

(d) State particles: initial (cyan) and
converged distribution at t=15 (blue).

Fig. 2. (a)-(b): Three dimensional (x,y,θ) reachable set computed for a time horizon of 1s based on the relative dynamics of the two robots - maximum
linear velocity = 0.2m/s, maximum angular velocity = 0.2rad/s. (c): One-step reaction particle filtering - observations outwith the reachable set are discarded.
(d): State particles for blue robot (left) as computed by pink robot (right) - initial uniform-random distribution and convergence after 15 time steps.

decision making strategies, based on the concepts described
in Section III. Each strategy is a tuple 〈e, r〉, where:
• e ∈ {(N )one, (E)scape} denotes the escape strategy

used. In other words, e ← N uses M− and I− (10-
13), whereas e← E uses M+ and I+ (17-18) as their
strategic modes and intent templates, respectively,

• r ∈ {(N )one, (I)ntent regret minimisation} is the type
of regret minimisation used (parameter rm in Alg. 3).

This formulation leads to a total of 4 valid permutations,
namely 〈N,N〉, 〈N, I〉, 〈E,N〉 and 〈E, I〉. We compare
these strategies in a round-robin one-versus-one soccer tour-
nament, where all strategies are played in three pairs of
games (10a-10b, 20a-20b, 50a-50b) consisting of 10, 20,
and 50 episode games, respectively. An episode terminates
if a robot scores a goal, if the ball leaves the field bounds, if
the robots collide, or if the maximum episode time (set to 100
time steps for each robot) elapses. The initial configuration
(Figure 1(a)) introduces additional strategic constraints:
• The ball is too far from the goal mouths, so robots

require a sequence of actions in order to score.
• The robots require dexterous manoeuvres to evade their

opponents and kick the ball past them.
2) Results and statistics: In addition to the final scores of

the games, we recorded other relevant statistics, such as the
mean time to score a goal (MTS) and to evade the adversary
(MTE), and the mean time taken by the adversary to score
(A-MTS) and to evade (A-MTE). Table II(a) summarises
these statistics, together with the total goals scored for (GF)
and against (GA). The entries are sorted with respect to the
total points (P), which are determined through the standard
soccer point system (3 points for victory, 1 for draw, 0 for
defeat). The game results are summarised in Table II(b).

Traces from two game episodes are given in Figures 3(a)
(episode between a “good” and “bad” strategy) and Figure
3(b) (the two best strategies). In the latter case, the scoring
robot takes more time to escape, as indicated by the larger
concentration of movements around the centre of the field.

3) Partial orderings: We summarise observations from
Tables II(a) and II(b) as partial orderings among templates.
We use the notation T1 ≥ T2 to denote that template T1
performs at least as well as T2, ‘·’ for the wildcard symbol,
and ¬A for any instantiation of a template except A.
• 〈·, I〉 ≥ 〈·,¬I〉: Regret minimisation seems to be by far

the most prevalent strategy, both on its own and when

(a) 〈E, I〉 (cyan) vs. 〈N,N〉 (pink) (b) 〈E, I〉 (cyan) vs. 〈N, I〉 (pink)

Fig. 3. Trajectory traces from selected game episodes.

combined with escape strategies, as indicated by both
the overall scores and the statistics.

• 〈E, ·〉 ≥ ¬〈N, I〉: The use of escape strategies is also
highly beneficial when compared to the benchmark
〈N,N〉 that makes no assumptions about the adversary.

• ¬〈N,N〉 ≥ 〈N,N〉: All strategies using at least one
heuristic out outperform the benchmark 〈N,N〉.

4) Convergence of regret minimisation: Finally, we test
regret minimisation against a stationary adversary. The regret
minimising robot is not aware of this, so it initialises all
intent weights uniformly. Figure 4 illustrates how regret
minimisation converges to the “true” template distribution.
Note that the PREDMOVE template is also representative of
a static adversary; if that robot is never observed to move,
the distribution RM will assign high weights to null moves,
thus also predicting a static reaction. This similarity partly
explains the spikes in the STATIC and PREDMOVE curves.
Nonetheless, the joint weights of the two templates (Static +
PredMove curve) are correctly observed to converge to 1.
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(a) Summary of scores and strategy statistics -best entries in boldface.
Strategy P GF GA MTS MTE A-MTS A-MTE
〈N, I〉 35 143 129 68.77 54.12 70.65 54.55
〈E, I〉 28 130 119 69.15 53.37 67.65 54.85
〈E,N〉 24 121 125 71.67 55.19 68.45 53.30
〈N,N〉 15 119 140 71.87 55.31 70.16 53.13

(b) Soccer tournament results
10a 10b 20a 20b 50a 50b

〈N,N〉-〈N, I〉 3-4 2-4 6-8 4-7 12-13 13-19
〈N,N〉-〈E,N〉 1-4 4-4 5-4 5-5 18-11 10-12
〈N,N〉-〈E, I〉 1-2 1-2 5-5 4-3 16-11 9-22
〈N, I〉-〈E,N〉 3-0 4-1 9-5 6-4 10-15 14-15
〈N, I〉-〈E, I〉 4-2 3-3 4-7 4-7 13-13 14-17
〈E, I〉-〈E,N〉 1-2 4-1 5-5 3-5 8-16 15-12

TABLE II
RESULTS AND STATISTICS

V. CONCLUSION
We present a strategic decision making framework for

a relatively complex class of multi-robot games, charac-
terised by both sensory and strategic uncertainty. The specific
contributions of this paper are twofold. On the one hand,
we present a novel probabilistic adversarial state estimation
algorithm, featuring both data-driven approximation and rea-
soning about a dynamical constraint. Our evaluation shows
a performance improvement, in simulation, compared to
general purpose filtering algorithms, which supports our
argument in favour of decoupling estimation of a noisy state
from estimation of strategy. This gain is likely to be even
higher in interactions between physical robots, where sensory
data is both sparser and much more spurious. On the other
hand, we have adapted game theoretic concepts, which had
previously been studied primarily in an abstract theoretical
setting without physical constraints, into a unified intent
inference framework for multi-robot games. Our results
favour the use of regret minimisation as an adaptive learning
mechanism, while showing promise for careful use of escape
strategies that exploit the adversary, as part of a decision
making system with a diverse set of intent templates.

The concepts presented in this paper can be extended to
allow robots to act strategically over greater time horizons
and using a larger repertoire of templates. One approach
would be the incorporation of deception in the decision mak-
ing framework, whereby robots could execute actions that
conceal their true intentions. Developing such sophisticated
behaviours requires a deeper understanding of the properties
of various concepts described in this paper. We are currently
working on evaluation of our algorithms in adversarial games
involving physical robots, while also considering the inter-
esting and important special case of human-robot games.
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APPENDIX

A. Relative orientation estimation

Algorithm 4 Relative Orientation Inference

1: INFERORIENTATION(RBij ,BBj)
2: Input: Robot beliefs RBij for ri, ball beliefs BBj
3: distTh← 0.7m {distance threshold}
4: 〈cdri, cdb, cdbri, ldbri〉 ← {current distance of ri and

ball, current/last distance of ball from ri}
5: if rand < 0.7 and (cdri > cdb or cdbri < ldbri) and
cdri > distTh then

6: return atan2(yBj,t−yij,t, xBj,t−xij,t) {ri has moved
closer to the ball→ infer that it is facing towards it}

7: else
8: if rand < 0.5 and cdri < distTh then
9: return atan2(yij,t, x

i
j,t) + π

10: else
11: return π {ri is facing in the direction of rj}
12: end if
13: end if


