Constrained geodesic trajectory generation on learnt skill manifolds
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Abstract— This paper addresses the problem of compactly
encoding a continuous family of trajectories corresponding to
a robotic skill, and using this representation for the purpose of
constrained trajectory generation in an environment with many
(possibly dynamic) obstacles. With a skill manifold that is learnt
from data, we show that constraints can be naturally handled
within an iterative process of minimizing the total geodesic
path length and curvature over the manifold. We demonstrate o
the utility of this process with two examples. Firstly, a three- ik ik
link arm whose joint space and corresponding skill manifold " 4
can be explicitly visualized. Then, we demonstrate how this Qe
procedure can be used to generate constrained walking motions \\f i iy
in a humanoid robot. . ; /
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Fig. 1. Top Sketch of the constrained optimization procedure, wheee th

Humanoid robots receive increasing attention as genet%]StaC'e se0 drives the trajectory away from the red square obstdalé,
n obstacle poinb;, affects only the path points that are within its range

purpose platforms suitable to a multitude of applicationgos) and exerts on them repulsive forces (red). In contrast tta points
However, the level of flexibility that can actually be aclddv are modeled as a spring system and points of the path can egetisive

tends to fall short of this promise of generic dexterity. Onglot shown) and attractive forces (blue) to their pat ndgh. Right Al
. e . . . . __forces that act on each path point are averaged and theingsumiéan vector

of the big difficulties is related to the problem of devisingis subsequently projected on the leamt manitatd
motion planning and control algorithms that can cope with ) )
the combination of dynamic complexity, dimensionality andtPProach to handling such problems and we'd like our
model imprecision. Many off the shelf solutions providing@PProach to be compatible with this paradigm.
humanoid behaviours, e.g., for locomotion, tend to be re- The basic notion of utilizing low-dimensional representa-
stricted to a limited and discrete vocabulary, valid only irtions in a motion synthesis setting is becoming well acagpte
narrow domains of applicability. For instance, it is hard tdn the robotics and graphics communities [3], [4], [5]. Some
find a general purpose humanoid walking ‘engine’ that prorecent works [6], [7], [8] address this issue by considering
vides full control over step length, width and height, inlrea how task space constraints, e.g., end-effector consdraint
world terrains. On the other end, specialized approaclats tilcan be used to structure planning in configuration space
do enable some flexible movements tend to be computatiowith local Jacobian mappings. However, this requires full
ally expensive, e.g., requiring high-dimensional nurnaric access to an exact model, which may not always be possible.
optimization and/or c-space search, often with near-exathe machine learning literature includes many examples of
knowledge of the system and its environment. This is a steglimensionality reduction methods used to abstract and/or
requirement for resource constrained machines. make problem spaces manageable. Wang et al. [9] introduced

In this paper, we address the problem of designing motidfie GPDM, which identifies a mapping to a low dimensional
strategies that can achieve a rich set of within-skill wisies. space where a linear dynamic model is fit to data. In the
These strategies are acquired in a data-driven manner-allcsame spirit, Bitzer et al. [10] use a Gaussian Process-based
ing for adaptation to changes in environmental conditiongonlinear dimensionality reduction technique to arriveaat
and task contexts, and can be implemented in realistibspace within which one may approximate demonstrated
resource constrained robotic systems. Such a representatilata using parameterized families of paths. An approadh tha
of a parameterized skill, applicable under a wide variety o6 closer to our current work is that of Calinon et al. [11],
conditions, could then form the basis for higher level searcwho demonstrate robot programming by demonstration with
processes over a small alphabet, enabling fast high lew&lprobabilistic model, namely Gaussian Mixture Regression
planning (e.g., [1]). Indeed, one of the big weaknesses 6f Jacobian-based inverse kinematics for learning trajec-
some existing motion synthesis strategies is that they do ni@ries and incorporating task space constraints. What has
cleanly admit such abstractions. not always been exploited in such work is theometrical

We build on earlier work [2] — to compactly represemstrucyureof families of paths in lower dimensional subspa}ces.
a continuous family of trajectories representing a specifiBy simply mapping a set of poses to a low-dimensional
skill such as variable step-length walking - to incorporatépace and fitting a parameterized model, one is essentially
constraints (involving a combination of task and joint spacoverriding potential intrinsic dynamics effects that define
obstacles). The goal is to define a scheme wherein the maRiany behaviours of interest.
fold captures the essential variations in the set of trajezsd Our goal is to learn this geometric structure, i.e., a skill
corresponding to a skill, from which one is able to lazilymanifold, that captures the intrinsic structure of the gpaic
select specific instances as the constraints (possiblyntigha trajectories by approximating the tangent space from demon
are revealed. In practice, one often adopts a recedingdrori stration data. So, if one begins with a set of motion examples

I. INTRODUCTION



from a specific class, e.g., due to a path optimization aligned. For a precise model of the tangent space one would
redundancy resolution principle or even a more complereed to compute the tangent basis for each p6i(z*),
kinodynamic constraint, then one seeks a representatain thwhich can be considered as a regression over the evidence
intrinsically captures both the restriction of states tawa-l (training data), and compute the alignment facteis,for all
dimensional spacand the evolution of the trajectories in neighboring points. Solving for the bases and their aligmme
that space - as opposed to imposing a trajectory generatisimultaneously is complex, but if either one is kept constan
schemepost hoc solving for the remaining variables becomes a tractablst lea
squares problem.
Il. MANIFOLD LEARNING Modeling , is done with a linear model of radial basis
Our nonlinear manifold learning method is based offunctions (RBF's) with features over the evidence [14], where
Locally Smooth Manifold Learning by Dollar et al. [12], the number of basis functionsf, acts as parameter that
which we have adapted with robot motion-specific issuesan control the smoothness of the estimated mapping. More
in mind. In particular, we replace the neighborhood graphonsmooth nonlinear manifolds with abrupt changes, would
creation process with a procedure that considers task spagpically require more basis functions to ensure a tight
distances and the need to ensure that temporal neighborhdeogal fit, though the generalization ability may be weakened
relations along the demonstrated trajectories are resgpectOptimizing the model requires alternating between the two
similar to the procedure used in ST-Isomap [13]. least squares problems described above, until a local rainim
In the usual formulation, manifold learning is aimed athas been reached. Typically more than one random restart is
finding an embedding or ‘unrolling’ of a nonlinear manifold performed to avoid bad local minima.
onto a lower dimensional space while preserving metric _ .
properties such as inter-point distances. Much of this worl8: Optimal geodesic paths
e.g., Isomap LLE, has been focused on summarization, By approximating the tangent space of the manifold, we
visualization or analysis that explains some aspect of thgain access to a variety of geometric operations. Central to
observed data. On the other hand, we are interested dnr robotics aims is the ability to compufmths through
preserving properties of trajectories in the data set. Sopnfiguration space that lie on the low dimensional manifold
our goal is to learn a model of the tangent space dh this spirit, we now change our notation of points fram
the low-dimensional nonlinear manifold, conditioned oe thto ¢, to denote poses a robot can achieve in a configuration
adjacency relations of the high dimensional data. Such space.
learnt manifold model can then be used to compute geodesicOur goal is to find the shortest path between two specified
distances, to find projections of points on the manifold angdosesg,;q,+ andge.q € R?, D being the dimensionality of
to directly generate geodegmathsbetween points. the configuration space, that respects the geometry of the
. learnt manifold. In a robotics context, being on the mauifol
A. Learning the model essentially means that the constraints (e.g., optimalityt.w
Given that outD-dimensional data lies on a locally smootha particular task-specific cost) inherent in the trainingada
d-dimensional manifold inD-dimensional space, whete< are satisfied. In practice, we discretize our path into a set
D, there exists a continuous bijective mappig that of n via points,q = qstart, - - - s Gends WIth gsrare aNd geng
converts low dimensional points€ R¢ from the manifold, being fixed, and we follow a combination of gradient descent
to pointsz € R of the high dimensional space,= M(y). steps to minimize the length of the path while not leaving
The goal is to learn a mapping from a point on the manifolthe support of the manifold.
to its tangent basig{(x), The initial estimate of the shortest path is computed
0 0 Dxd by interpolating linearly betweefy,:,+ and genq, while
H:weRP {%M(y) o @M(y) €R following the geometry of the manifold, until the distance
N . between consecutive points is acceptable. Since we have
;Vg‘:ég g?iﬁecgwl;m?o%ﬂg)ilz atr?:%zr\tli(;?tggr?\ggfet%?\%entle‘."lr.nt the tangent space of the manifold we can find a
e minimum energy solution that follows the orthonormal (to

with respect toy. : .
Learning a model of the mapping with some parametrizaEhe manifold) component of the gradient of

tion ¢, i.e. Hp, is done as follows. Given two neighboring  €¢r7am(q) = min Z |Ho(77)e7 — (¢ — )],

points on the manifoldz? and 27, the difference between {e }i,jeNi

these points,A?j, should be a linear combination of thethat essentially makes thgs “stick” to the learnt manifold
tangent vectors at that point on the manifold, scaled by awy iteratively moving them to points where neighboring
unknown alignment factor. Taking\’; to be the centered (consecutive) bases are aligned. Next we apply another
estimate of the directional derivative at/ and ¢/ to be gradient descent optimization by following the paralled (t
the unknown alignment factor, we ha#é,(z*/)e”’ ~ A’;,  the manifold) component of

that holds givere is small enough and the manifold can be n

i i—1]2
locally approximated with a quadratic form. To le&kfy we €rTiengtn(Q) = Z Hq —q 1H27
define the error function: . _ L i=2 .
err(0) = min H?'lg(i‘ij)eij -~ N.| 2 that_|terat|vely minimizes the length qf the pa}th W|thqut
{eid} g2 leaving the support of the learnt manifold, while keeping

LIENT the endpoints fixed.

where N? is the set of neighbors of?. This minimization , ,

problem for @ is solved with a regularization term thatC. Constrained geodesic paths

ensures that the’s do not get too large, that the tangents In practice, we often require more control over the gen-
do not get too small and that neighboring tangent bases argated trajectories as, often, the system would need tal avoi



task space and joint space obstacles. This is a constraingdculate the curvature, over the discrete geodesic points,

trajectory generation problem over the manifold. We novwy = ¢1,...,q, as
describe a procedure for generating constrained geodesic i 0q? 1 9
paths that avoidno-go” patches on the manifold surface. T 952 LT TS

These are defined as sets of obstacle paits R” that where s is the distance between two consecutive points.
are uniformly sampled from th&no-go” task space region \We calculate the mean curvatugeand the error gradient
and trace the obstacle patch in joint space. For example such- ¢ (vector), for each triple of path points. Each point
points can be samples from the faces of a cube obstacleigrthen moved by a small step along the error gradient
a set of points sampled from the surface of a sphere.  and projected on the manifold tangent space. The entire
The intersection of the manifold set and the obstacle sqirocedure is summarized in Alg. 1. The following sections
M N O, is the region that we would like to take into present two examples of our method. The first example
consideration when generating a constrained geodesic paghesents experiments on a simulated 3-link arm where both
This point set would drive the geodesic path away from thghe manifold and the learnt model can be visualized and
patch that we want to avoid but given the learnt tangent spagge representative of the core ideas behind this work. For
the path will not leave the surface of the manifold, thus théhe second example we use a physical humanoid robot,
optimality properties that the manifold represents. with which we demonstrate how our method scales to more

We treat the affected consecutive geodesic path pointsemplex systems and more challenging tasks.
q, as a system of springs that can either exert attractive or

repulsive forces to their neighbors. A forcg?, between lIl. EXPERIMENTS ON A ROBOTIC ARM
two consecutive path pointg; and ¢;, is repulsive if the Our first set of experiments are designed to elucidate the
distance between them is less th@nand attractive if the basic concepts underlying our approach. We usg-lak
distance is greater thafi The distance/ is a metric that planar arm where we can explicitly visualize both the con-
is derived from the manifold geometry and is the spacinfiguration space and the optimization manifold (surface tha
between consecutive points, while the strength of the forceorresponds to a specific redundancy resolution strategy),
is dependent to the distance difference. along with possible obstacle points. The arm is a series

The obstacle point set), exerts repulsive forces to the of three rigid links, of1/3 length, that are coupled with
path points. The area of effect of the obstacle point sesis alhinge joints, producing a redundant system with 3 degrees
defined relative td/; each obstacle point, exerts a force, of freedom (DoFs) that is constrained to move on a 2

9., to every path pointg;, within a hypersphere of radius dimensional plane (task space).
set to2¢. This distance can also be increased or decreasg\d Training dat
with obstacle clearance in mind. - lraining data ) )

We calculate all forces that act on each affected path point We randomly sample 100 Cartesian points from the top
and compute a mean force vector. This vector is projectegémicircle of the task space of the system. The dataset is
on the manifold and each point is moved by a small step00 points ofz and y couples, where-1 < z < 1 and
accordingly. We repeat the procedure until all points ha®@ < y < 1. We run the task space dataset through an
cleared obstacle points or the algorithm has converged. Figerative optimization procedure detailed below and get th
1 provides a sketch of the procedure. corresponding joint space datapointg,= (q1,¢2,4q3). A
Algorithm 1 Constrained Geodesic Trajectory Generation S€t 0of 100 such points is depicted in Fig. 2(a), as black

INPUT. M. Gororts Gond. @ dots in joint space and task space plots. We densely sample

OUTPL.JT' ’:“{‘“t’ endr = } the space with 900 more points that are used sqlely for

0 fir%fﬂ G(ésggé’s'i(.:'l’;gtljg(:nd ) visualization purposes and play no further part in the liegrm
q tp art) Jend procedure. For visualization purposes, we use all 1000tgoin
repc)l%a c e Dist o to compute a Delaunay triangulation of the joint space
L qompgel :S angeq( I): 0 structure as sampled, and then plot the trimesh (triangle
/%> fij] < Calculate Spring Forceg( d°) mesh) for comparison with the paths that our algorithm

fi = 1+ [ , produces. This trimesh surface is depicted in all figuref wit

M — fiHgHG thin gray edges.

q < q+fM The system being redundant, we first have to choose a

C' + 0q*/ds* {Curvaturg redundancy resolution strategy, which implicitly spesifike

C+1/n) C geometry of the manifold (Fig. 2(a)) that we subsequently

CM + (C— CHYHIHY learn. Here, we choose the joint space configuraiigrihat

q ¢+ q+~CM minimizes the absolute sum of joint angles, in a different

0 < q—old view it minimizes the distance to a convenience (robot
until d© = null or § <106 default or minimum strain) posey. = (0,0,0), with a joint

1) Curvature smoothingThe above procedure only actswe'ght'ng_' Formally, 9 ,
on the geodesic path points that are in the area of effect min |lwq — qc||”, subject tof(q) —x =0,
(distance< 2/) of obstacle points. This tends to lead towherew is a weighting vectorf is the forward kinematics
trajectories that are not smooth when only small portions &fnd x is the goal endpoint position on the plane. We set
the paths are near obstacles. To alleviate this, we inteduc w = (4,2,1), which means that the cost of the first joint
step that considers the full set of path points and integplayffset will be four times as significant as the last jointslang
with the constraint optimization. thus penalizing more its motion.

We use the path curvature as a measure for smoothingThe resultingq’s trace a smooth nonlinear manifold in
the generated geodesic paths in a structured fashion. \Jént space, depicted in Fig. 2(a). We note that the manifold
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(a) Samples. (b) Learnt manifold. (c) Generated geodesic paths.
Fig. 2. The manifold learning and usage for the 3link arm examg) Starting with 100 datapoints in joint space, that amoad to task space coordinates
as in the inset plot. b) The neighborhood graph in task spaset(plot), and the learnt tangent space that the modelqtseftir the RBF centers in the
high dimensional space. ¢) Randomly sampled optimal (uncanstthgeodesic paths and corresponding task space tnégscto the inset plot. The thin
gray trimesh is a densely sampled reconstruction of the widgrkurface, used only for comparison and as a visualizatidn

surface resembles a convex strip that bends backwards to- Constrained geodesic paths

wards the edges, much like a section cut of a bent tube. This

is the surface that points of the specific optimality criteri 254 . Taskspace avoidance
trace. Also different redundancy resolution strategiesildio . % o
produce different optimality manifolds. We note that, in 5 ' c(z/?C
general, this kind of information is not explicitly knowm(i ap AL
the case of human demonstration) or even visualizable, for BB
many complex problems.

15+

a,(rad)

B. Implementation 19

We start by computing the neighborhood graph of the
dataset points. We do this by evaluating the task space dis-
tances as the forward kinematics of the system are known. As
we require that our set consists of one connected component, -os~
we gradually increase the neighborhood distance until no
disconnected subsets exist. The resulting neighborhagehgr
is depicted in Fig. 2(b)(inset plot). , aad o

After visualizing the optimality surface we can concludqc'g' 3. Example geodesic trajectories that avoid point setaates on the

. A earnt manifold. The constrained geodesic trajectoriesiratdue, and the
that the manifold can be naturally represented with a twgnhconstrained versions are in red.

dimensional tangent space, and we learn a modelpf (g0 Note that the resulting task space trajectories are
with 10 ReFs. We can subsequently evaluats, at any cgrved, an interesting obser\g/]ation digcussedjin the next
point in our joint space. For example Fig. 2(b) shows th§ubse<:tion. In most realistic scenarios, we need moreaontr
tangent basis evaluated at the centers of thesRused. Note over the geodesic paths that we generate. We would like to be
that the basis vectors are aligned and vary smoothly, i.e. W 14 specify patches on the manifolds that we would like
obtain good generalization within the region of supportef t the generated paths to avoid, while preserving their geodes

data. This way, in order tbwalk” on the manifold we need . o : :

o evaluate thye learned tanaent basis and follow dachl properties. This is accomplished by the procedure detailed
f ; h i gt in oth ds follow th in section 1I-C, and results are depicted in Fig. 3. We start
rame for each consecutive step, in other words Tollow ith a set of random start and end points and pick a list

blue and green arrows of Fig. 2(b) for each point in question; opsiacle points that intersect the manifold. In Fig.3 the
C. Results points to be avoided appear as red circles, and effectively

Once we have learnt a model of the manifold tanger{2C€ @ Patch that can be viewed asna-go” region on
basis we have access to the geometric properties of t e manifold. The red lines are the predicted geodesic paths

surface. Subsequently the geometry of the manifold ¢ at travel through the obstacle regions. The blue lines are

be used to generate optimal geodesic paths. The proced g constrained geodesic paths that are optimized with the

for generating these unconstrained paths was described? stacle patches in consideration. The resulting taskespac

section 11-B, and the key advantage is that the generaté) haviour for this set of examples is visualized in the inset
paths will be of shortest distance and adhere to the manifo ot of the same picture.

geometry. Optimal geodesic paths generated from rando
sampled start and end points are depicted in Fig. 2(c),
where the manifold geometry is also plotted (thin gray One interesting observation, regarding the shape of the
trimesh) for comparison. Note how the generated paths tratask space trajectories generated by geodesic paths,tis tha
the underlying manifold geometry while also minimizingthe shortest path in the 3 dimensional joint space would
the deviation from a straight line connecting start and ende a straight line connecting the start and end points. The
points (non-geodesic minimum distance). The resulting tasptimal geodesic paths are the joint space trajectoriels tha
space trajectories —the geodesic paths run through forwacdnnect start and end points and minimize the deviation
kinematics— are also displayed in the inset plot at the sanfimm a straight line with respect to the manifold geometry.

0.5+

1
15 > 1

q,(rad)
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ylem) ylem)

e em e yom) (a) Generated right foot traj. (b) Generated left foot traj.
(a) Right foot training set (b) Left foot training set Fig. 5. Generated task space trajectories from randomly sahgphrt and
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end points. The trajectories correspond to swing foot milpajectories

Fig. 4. The neighborhood graph, computed for a dataset of B@ts in task space and are stable on the robot

for each swing leg. Both plots show the swing foot midpointifas in
task space. The inset plots show the corresponding contintrajectories

in task space. resolution strategy that would yield walking examples as

training data for manifold learning.
Now, the manifold is the surface defined as the union of all

joint space paths that are optimal with respect to a specifft: Training data

redundancy resolution strategy. These are shortest gaihs t We frame the redundancy resolution strategy as a con-
satisfy the optimality requirements implicitly encoded.dur  strained nonlinear optimization problem. Algorithmigaillve
scenario, the predicted trajectories would be composed ofuse a sum of squares (SoS) approach that uses the trust-
series of points that minimize the sum of joint angles , thueegion-reflective algorithm.

the task space trajectories would be subsequently optilmize The optimization problem is of the form,

with respect to minimum angular change. min J7(q), J = J*(¢) + ...+ J"(q),
Another point is that the generation of geodesic paths is a .
more efficient — ananuch faster- than numerical optimiza- subject tof(q) — x =0,

tion as described in section I1I-A (as also in [2]). One catre WhereJ is the cost function that is composed of a number

limitation is that the start and end points used, are assum@fcost factors/™, f is the forward kinematics and is goal
to lie on the manifold surface for our experiments. ThestSK space positions. The cost function is a mixture of task
points are currently generated by the numerical optimzati constraints and stability constraints. The cost functiom w
strategy. Once the manifold has been learnt, one couldiseak¢sed for data generation evaluates:
efficiently for a target point that satisfies the task spag@syo  « distance between swing foot and goal
In practice, only the goal point has to be searched for and  alignment between swing foot and x/y versors
located on the manifold as the start point would already be « deviation in pelvis position
the current position of the robot. « alignment between waist and z versor
The initial pose for the numerical optimization algorithe i
IV. EXPERIMENTS ON A HUMANOID ROBOT a default robot initialization pose with slightly bent kisee
The three-link arm experiments are useful for demonstrat- To generate a walking trajectory we start with the desired
ing the working of the manifold learning and constrainedask space path of the swing leg and the position of the pelvis
optimal geodesic path planning algorithm. Next, we move tand discretize to 10 points. The swing foot trajectories are
our main example, a humanoid robot. This example allowstraight lines from start to goal points while the heightlug t
us to demonstrate an intuitive example of a skill manifoldfoot is regulated with a sinusoid with varying apex height.
Our experiments are based on tNeo (Fig. 7) humanoid In practice we set the position of the pelvis to be over the
robot, popularly known as the chosen robot for 8tandard  support foot and perform a double support weight shift step
Platform Leaguen RoboCup TheNaois approximately half once the swing leg has reached the goal position. Lastly, we
a meter tall and weightd.3kg. It has an 50MHz AMD run the optimization procedure described earlier, and et t
Geodeprocessor onboard, running embedded Linux. It hagint space trajectory of the leg swing and the weight swift
25 DoFs and a variety of sensors. From the point of viewhases for each complete task space step path.
of motion synthesis, it is an inherently unstable systerthwi  The optimization results are approximately constant speed
an elevated center of mass. quasi-static trajectories, in the sense that inertialcésfare
We do not have an analytical model of the dynamics of thaegligible. We collected 50, full body, joint space trajgats
system. Even if we were to develop an approximate modebr stepping with the right leg and the same amount for
it would need to account for varying model parameters, e.gtepping with the left leg. Start and goal points of everpste
change in the motor behaviour as the battery gets depletagve been randomized within a reasonable reaching distance
or motor temperatures vary. Such effects are very hard fthe inset plots of Fig. 4(b) and 4(a) show the task space
capture analytically, although they do matter in pract®e, trajectories of each swing leg foot midpoint, by running the

we prefer to work directly from experimental data. Howeverdatasets through the forward kinematics of the system.
we do use a model of the robot kinematics for calculatin

the relevant foot and pelvic positions in global coordisate B- Implementation

We focus on the task of walking, with the aim of generat- Compared to our previous example, this is a higher
ing a motion synthesis strategy that achieves full coveadge dimensional space and sampling is necessarily somewhat
a reasonably large interval in step length, width and height sparse. Of the 25 DoFs of the robot, we focus on the 12
effect, the optimality surface would be the set of all saini DoFs for legs and hips, keeping the arm and head joints
to all possible task space queries, thus a tangent space pa@ha constant pose. Furthermore we separate each footstep
would have a local coordinate frame that guides the path into a swing phase and a weight shift phase. This way we
that particular neighborhood. We begin with a redundancgivide the learning process into two components, leg swing



Constrained left step examples

z(cm)

x(cm)
Fig. 7. Nao executing of a plnned motidfop, the unconstrained stepping
trajectory that hits an obstacle (the baBpttom the constrained optimized
trajectory where the swing path avoids the obstacle, thie bal

z(cm)

x(cm)

y(om)
Fig. 6.  Generated constrained task space trajectories faomdomly
sampled start and end points. The red trajectories corresjootie original
unconstrained foot midpoint that collide with the obstack(circle). The
resulting optimized constrained task space trajectorietaal in blue.

mamf(.)ld a.‘nd.SUpport \.Nelght. shift manifold - as the measurg. 8. Detail of a left foot swingTop, the origina trajectory that provides
of optimality is essentially different for each phase. minimal foot clearance (approx. 2cm on apeBpttom adding a obstacle

We begin with the same neighborhood graph computatiotipse to the original trajectory pushes the optimization ighér stepping
procedure where we gradually increase the neighborhodgiectories (here approx. 5cm on apex).
distance until the graph is not disconnected (Fig. 4(b) angk the manifold to the collection of all such data points, and
4(a)). We set the dimensionality of the manifolds to be 4making all local frames consistent, we extract a manifold
with a simple cross validation step that penalizes modghat indeed traces the true underlying geometry that the
complexity while producing stable and reasonable reshits. gptimization procedure sculpts in the robot joint space.
all learnt manifolds we used models with 2@/, and 500  The above examples correspond to trajectory generation in
data points that belong to 25 random task space trajectorigh unconstrained scenario. As with the 3-link arm example
as described in the previous section. we randomly pick a set of start and end points in task space,
generate a trajectory as a geodesic path on the learnt skill
C. Results manifold and insert an obstacle near the trajectory. Exaspl

The learnt manifolds are able to produce smooth walkingf this process are depicted on Fig. 6 for right and left foot
trajectories that satisfy the optimization criteria usegto- midpoint task space trajectories. Note that the dashed red
duce the training data. Moreover, trajectories are producdines correspond to the unconstrained predictions théitleol
approximately withinone to two secondsin contrast to with the perceived obstacles, that appear as red circles.
the numerical optimization used to generate the data whichThe efficacy of such an additional degree of control
required on average approximatdly secondper trajectory, is obvious. To provide a concrete example we have used
both with reasonable code and on commodity hardwaréhe constrained geodesic trajectory generation for random
The computation time of the former increases with th@bstacle avoidance, staying away from regions in task space
dimensionality of the manifold. that might interfere with the swing trajectory. In the case

The procedure is able to produce stable walking in thef going up or down a step, it is often the case that the
continuum of the reachable space of the robot as depictéabt collides with the previous or next step’s edge. When
in Fig. 5(a) and 5(b) for right and left swings accordingly.such a collision occurs, the robot loses its balance and fall
One interesting observation is that the robot manufacturéiown. Now, we can detect this collision and set this point
in the accompanying software for walking, specifies that theo be a“no-go” point in a point set. In the same state
stepping space of the feet cannot extend more than 9cthe robot will then skillfully avoid the colliding pose and
With our manifold trajectory generation we are able to stepuccessfully negotiate the step. The accompanying video
further and reach stably up to 12cm, nonetheless most of opirovides a number of such examples. Snapshots of such
experimental sampling was constrained to be up to 10cm.behaviour are also shown in Fig. 7 and 8.

One point to note is that the shape of the generated
trajectories in task space is qualitatively different frone V. CONCLUSIONS AND FUTURE WORK
training data. The training data is generated by point-biysp We present an approach to constrained trajectory gener-
kinematic optimization of an artificially imposed sinusalid ation over a manifold that compactly encodes a continuous
sequence of task space points. By fitting the tangent spafaamily of trajectories corresponding to a robotic skill.igh



skill manifold is learnt from demonstration data by approx-
imating the tangent space. Having this manifold along with
the local coordinate frames in the form of the tangent space
enables efficient ways to handle changing task contexts and
obstacles, while respecting intrinsic requirements oftéisé.

We demonstrated these ideas on two sets of examples
- a simulated robotic arm, suitable for visually illustregi
core concepts and a humanoid robot behaviour, constrained
variable step-length walking. We have demonstrated that
the manifolds, defined by solutions to a complex numerical
optimization problem, can be learnt from sparse data artd tha
the geometric structure generalizes within and beyond the
support of the data. This enables motion synthesis methods
where one is able to lazily compute trajectories in resptmse
changing task specifications (perhaps including addittons
the underlying cost function expressions) by the constdhin
geodesics that intrinsically respect the partial speditica
that define the essence of the underlying task.
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