
Constrained geodesic trajectory generation on learnt skill manifolds

Ioannis Havoutis Subramanian Ramamoorthy
School of Informatics, University of Edinburgh, Edinburgh, EH89AB, UK

I.Havoutis@sms.ed.ac.uk, S.Ramamoorthy@ed.ac.uk

Abstract— This paper addresses the problem of compactly
encoding a continuous family of trajectories corresponding to
a robotic skill, and using this representation for the purpose of
constrained trajectory generation in an environment with many
(possibly dynamic) obstacles. With a skill manifold that is learnt
from data, we show that constraints can be naturally handled
within an iterative process of minimizing the total geodesic
path length and curvature over the manifold. We demonstrate
the utility of this process with two examples. Firstly, a three-
link arm whose joint space and corresponding skill manifold
can be explicitly visualized. Then, we demonstrate how this
procedure can be used to generate constrained walking motions
in a humanoid robot.

I. I NTRODUCTION

Humanoid robots receive increasing attention as general
purpose platforms suitable to a multitude of applications.
However, the level of flexibility that can actually be achieved
tends to fall short of this promise of generic dexterity. One
of the big difficulties is related to the problem of devising
motion planning and control algorithms that can cope with
the combination of dynamic complexity, dimensionality and
model imprecision. Many off the shelf solutions providing
humanoid behaviours, e.g., for locomotion, tend to be re-
stricted to a limited and discrete vocabulary, valid only in
narrow domains of applicability. For instance, it is hard to
find a general purpose humanoid walking ‘engine’ that pro-
vides full control over step length, width and height, in real-
world terrains. On the other end, specialized approaches that
do enable some flexible movements tend to be computation-
ally expensive, e.g., requiring high-dimensional numerical
optimization and/or c-space search, often with near-exact
knowledge of the system and its environment. This is a steep
requirement for resource constrained machines.

In this paper, we address the problem of designing motion
strategies that can achieve a rich set of within-skill variations.
These strategies are acquired in a data-driven manner, allow-
ing for adaptation to changes in environmental conditions
and task contexts, and can be implemented in realistic
resource constrained robotic systems. Such a representation
of a parameterized skill, applicable under a wide variety of
conditions, could then form the basis for higher level search
processes over a small alphabet, enabling fast high level
planning (e.g., [1]). Indeed, one of the big weaknesses of
some existing motion synthesis strategies is that they do not
cleanly admit such abstractions.

We build on earlier work [2] – to compactly represent
a continuous family of trajectories representing a specific
skill such as variable step-length walking - to incorporate
constraints (involving a combination of task and joint space
obstacles). The goal is to define a scheme wherein the mani-
fold captures the essential variations in the set of trajectories
corresponding to a skill, from which one is able to lazily
select specific instances as the constraints (possibly dynamic)
are revealed. In practice, one often adopts a receding-horizon

Fig. 1. Top; Sketch of the constrained optimization procedure, where the
obstacle setO drives the trajectory away from the red square obstacle.Left;
An obstacle pointok affects only the path points that are within its range
(2ℓ) and exerts on them repulsive forces (red). In contrast the path points
are modeled as a spring system and points of the path can exert repulsive
(not shown) and attractive forces (blue) to their path neighbors.Right; All
forces that act on each path point are averaged and the resulting mean vector
is subsequently projected on the learnt manifoldM.

approach to handling such problems and we’d like our
approach to be compatible with this paradigm.

The basic notion of utilizing low-dimensional representa-
tions in a motion synthesis setting is becoming well accepted
in the robotics and graphics communities [3], [4], [5]. Some
recent works [6], [7], [8] address this issue by considering
how task space constraints, e.g., end-effector constraints,
can be used to structure planning in configuration space
with local Jacobian mappings. However, this requires full
access to an exact model, which may not always be possible.
The machine learning literature includes many examples of
dimensionality reduction methods used to abstract and/or
make problem spaces manageable. Wang et al. [9] introduced
the GPDM, which identifies a mapping to a low dimensional
space where a linear dynamic model is fit to data. In the
same spirit, Bitzer et al. [10] use a Gaussian Process-based
nonlinear dimensionality reduction technique to arrive ata
subspace within which one may approximate demonstrated
data using parameterized families of paths. An approach that
is closer to our current work is that of Calinon et al. [11],
who demonstrate robot programming by demonstration with
a probabilistic model, namely Gaussian Mixture Regression,
of Jacobian-based inverse kinematics for learning trajec-
tories and incorporating task space constraints. What has
not always been exploited in such work is thegeometrical
structureof families of paths in lower dimensional subspaces.
By simply mapping a set of poses to a low-dimensional
space and fitting a parameterized model, one is essentially
overriding potential intrinsic dynamics effects that define
many behaviours of interest.

Our goal is to learn this geometric structure, i.e., a skill
manifold, that captures the intrinsic structure of the space of
trajectories by approximating the tangent space from demon-
stration data. So, if one begins with a set of motion examples



from a specific class, e.g., due to a path optimization or
redundancy resolution principle or even a more complex
kinodynamic constraint, then one seeks a representation that
intrinsically captures both the restriction of states to a low-
dimensional spaceand the evolution of the trajectories in
that space - as opposed to imposing a trajectory generation
scheme,post hoc.

II. M ANIFOLD LEARNING

Our nonlinear manifold learning method is based on
Locally Smooth Manifold Learning by Dollar et al. [12],
which we have adapted with robot motion-specific issues
in mind. In particular, we replace the neighborhood graph
creation process with a procedure that considers task space
distances and the need to ensure that temporal neighborhood
relations along the demonstrated trajectories are respected,
similar to the procedure used in ST-Isomap [13].

In the usual formulation, manifold learning is aimed at
finding an embedding or ‘unrolling’ of a nonlinear manifold
onto a lower dimensional space while preserving metric
properties such as inter-point distances. Much of this work,
e.g., Isomap, LLE, has been focused on summarization,
visualization or analysis that explains some aspect of the
observed data. On the other hand, we are interested in
preserving properties of trajectories in the data set. So,
our goal is to learn a model of the tangent space of
the low-dimensional nonlinear manifold, conditioned on the
adjacency relations of the high dimensional data. Such a
learnt manifold model can then be used to compute geodesic
distances, to find projections of points on the manifold and
to directly generate geodesicpathsbetween points.

A. Learning the model

Given that ourD-dimensional data lies on a locally smooth
d-dimensional manifold inD-dimensional space, whered <
D, there exists a continuous bijective mappingM that
converts low dimensional pointsy ∈ R

d from the manifold,
to pointsx ∈ R

D of the high dimensional space,x =M(y).
The goal is to learn a mapping from a point on the manifold
to its tangent basisH(x),

H : x ∈ R
D 7→

[

∂

∂y1
M(y) · · ·

∂

∂yd
M(y)

]

∈ R
D×d

where each column ofH(x) is a basis vector of the tangent
space of the manifold aty, i.e. the partial derivative ofM
with respect toy.

Learning a model of the mapping with some parametriza-
tion θ, i.e. Hθ, is done as follows. Given two neighboring
points on the manifold,xi and xj , the difference between
these points,∆i

.j , should be a linear combination of the
tangent vectors at that point on the manifold, scaled by an
unknown alignment factor. Taking∆i

.j to be the centered
estimate of the directional derivative atx̄ij and ǫij to be
the unknown alignment factor, we haveHθ(x̄

ij)ǫij ≈ ∆i
.j ,

that holds givenǫ is small enough and the manifold can be
locally approximated with a quadratic form. To learnHθ we
define the error function:

err(θ) = min
{ǫij}

∑

i,j∈Ni

∥

∥Hθ(x̄
ij)ǫij −∆i

.j

∥

∥

2

2
,

whereN i is the set of neighbors ofxi. This minimization
problem for θ is solved with a regularization term that
ensures that theǫ’s do not get too large, that the tangents
do not get too small and that neighboring tangent bases are

aligned. For a precise model of the tangent space one would
need to compute the tangent basis for each point,Hθ(x̄

ij),
which can be considered as a regression over the evidence
(training data), and compute the alignment factors,ǫij , for all
neighboring points. Solving for the bases and their alignment
simultaneously is complex, but if either one is kept constant,
solving for the remaining variables becomes a tractable least
squares problem.

ModelingHθ is done with a linear model of radial basis
functions (RBF’s) with features over the evidence [14], where
the number of basis functions,f , acts as parameter that
can control the smoothness of the estimated mapping. More
nonsmooth nonlinear manifolds with abrupt changes, would
typically require more basis functions to ensure a tight
local fit, though the generalization ability may be weakened.
Optimizing the model requires alternating between the two
least squares problems described above, until a local minima
has been reached. Typically more than one random restart is
performed to avoid bad local minima.

B. Optimal geodesic paths

By approximating the tangent space of the manifold, we
gain access to a variety of geometric operations. Central to
our robotics aims is the ability to computepaths through
configuration space that lie on the low dimensional manifold.
In this spirit, we now change our notation of points fromx
to q, to denote poses a robot can achieve in a configuration
space.

Our goal is to find the shortest path between two specified
posesqstart andqend ∈ R

D, D being the dimensionality of
the configuration space, that respects the geometry of the
learnt manifold. In a robotics context, being on the manifold
essentially means that the constraints (e.g., optimality w.r.t.
a particular task-specific cost) inherent in the training data
are satisfied. In practice, we discretize our path into a set
of n via points,q = qstart, . . . , qend, with qstart and qend
being fixed, and we follow a combination of gradient descent
steps to minimize the length of the path while not leaving
the support of the manifold.

The initial estimate of the shortest path is computed
by interpolating linearly betweenqstart and qend, while
following the geometry of the manifold, until the distance
between consecutive points is acceptable. Since we have
learnt the tangent space of the manifold we can find a
minimum energy solution that follows the orthonormal (to
the manifold) component of the gradient of

errM(q) = min
{ǫij}

∑

i,j∈Ni

∥

∥Hθ(q̄
ij)ǫij − (qi − qj)

∥

∥

2

2
,

that essentially makes theqis “stick” to the learnt manifold
by iteratively moving them to points where neighboring
(consecutive) bases are aligned. Next we apply another
gradient descent optimization by following the parallel (to
the manifold) component of

errlength(q) =

n
∑

i=2

∥

∥qi − qi−1
∥

∥

2

2
,

that iteratively minimizes the length of the path without
leaving the support of the learnt manifold, while keeping
the endpoints fixed.

C. Constrained geodesic paths

In practice, we often require more control over the gen-
erated trajectories as, often, the system would need to avoid



task space and joint space obstacles. This is a constrained
trajectory generation problem over the manifold. We now
describe a procedure for generating constrained geodesic
paths that avoid“no-go” patches on the manifold surface.
These are defined as sets of obstacle pointsO ∈ R

D that
are uniformly sampled from the“no-go” task space region
and trace the obstacle patch in joint space. For example such
points can be samples from the faces of a cube obstacle or
a set of points sampled from the surface of a sphere.

The intersection of the manifold set and the obstacle set,
M ∩ O, is the region that we would like to take into
consideration when generating a constrained geodesic path.
This point set would drive the geodesic path away from the
patch that we want to avoid but given the learnt tangent space
the path will not leave the surface of the manifold, thus the
optimality properties that the manifold represents.

We treat the affected consecutive geodesic path points,
q, as a system of springs that can either exert attractive or
repulsive forces to their neighbors. A force,fq

ij , between
two consecutive path pointsqi and qj , is repulsive if the
distance between them is less thanℓ, and attractive if the
distance is greater thanℓ. The distanceℓ is a metric that
is derived from the manifold geometry and is the spacing
between consecutive points, while the strength of the forces
is dependent to the distance difference.

The obstacle point set,O, exerts repulsive forces to the
path points. The area of effect of the obstacle point set is also
defined relative toℓ; each obstacle point,ok exerts a force,
fo
ik, to every path point,qi, within a hypersphere of radius

set to2ℓ. This distance can also be increased or decreased
with obstacle clearance in mind.

We calculate all forces that act on each affected path point
and compute a mean force vector. This vector is projected
on the manifold and each point is moved by a small step
accordingly. We repeat the procedure until all points have
cleared obstacle points or the algorithm has converged. Fig.
1 provides a sketch of the procedure.
Algorithm 1 Constrained Geodesic Trajectory Generation

INPUT: M, qstart, qend, O
OUTPUT: q ≡ {qstart, . . . , qi, qend}
q← Optimal Geodesic Path(qstart, qend)
repeat

dO ← Compute Distances(q, O)
[fo

ik, fq
ij ]← Calculate Spring Forces(q, dO)

f̄i ← fo
i. + fq

i.

f̄M
i ← f̄iH

q

θH
q

θ

′

q← q+ γf̄M
i

Ci ← ∂q2/∂s2 {Curvature}
C̄ ← 1/n

∑

Ci

C̄Mi ← (C̄ − Ci)Hq

θH
q

θ

′

q← q+ γC̄Mi
δ ← q− qold

until dO = null or δ ≤ 10−6

1) Curvature smoothing:The above procedure only acts
on the geodesic path points that are in the area of effect
(distance< 2ℓ) of obstacle points. This tends to lead to
trajectories that are not smooth when only small portions of
the paths are near obstacles. To alleviate this, we introduce a
step that considers the full set of path points and interplays
with the constraint optimization.

We use the path curvature as a measure for smoothing
the generated geodesic paths in a structured fashion. We

calculate the curvature,C, over the discrete geodesic points,
q = q1, . . . , qn as

Ci =
∂q2

∂s2
, i = 1, . . . , n− 2,

where s is the distance between two consecutive points.
We calculate the mean curvaturēC and the error gradient
C̄ − Ci (vector), for each triple of path points. Each point
is then moved by a small step along the error gradient
and projected on the manifold tangent space. The entire
procedure is summarized in Alg. 1. The following sections
present two examples of our method. The first example
presents experiments on a simulated 3-link arm where both
the manifold and the learnt model can be visualized and
are representative of the core ideas behind this work. For
the second example we use a physical humanoid robot,
with which we demonstrate how our method scales to more
complex systems and more challenging tasks.

III. E XPERIMENTS ON A ROBOTIC ARM

Our first set of experiments are designed to elucidate the
basic concepts underlying our approach. We use a3-link
planar arm where we can explicitly visualize both the con-
figuration space and the optimization manifold (surface that
corresponds to a specific redundancy resolution strategy),
along with possible obstacle points. The arm is a series
of three rigid links, of1/3 length, that are coupled with
hinge joints, producing a redundant system with 3 degrees
of freedom (DoFs) that is constrained to move on a 2
dimensional plane (task space).

A. Training data

We randomly sample 100 Cartesian points from the top
semicircle of the task space of the system. The dataset is
100 points ofx and y couples, where−1 ≤ x ≤ 1 and
0 ≤ y ≤ 1. We run the task space dataset through an
iterative optimization procedure detailed below and get the
corresponding joint space datapoints,q = (q1, q2, q3). A
set of 100 such points is depicted in Fig. 2(a), as black
dots in joint space and task space plots. We densely sample
the space with 900 more points that are used solely for
visualization purposes and play no further part in the learning
procedure. For visualization purposes, we use all 1000 points
to compute a Delaunay triangulation of the joint space
structure as sampled, and then plot the trimesh (triangle
mesh) for comparison with the paths that our algorithm
produces. This trimesh surface is depicted in all figures with
thin gray edges.

The system being redundant, we first have to choose a
redundancy resolution strategy, which implicitly specifies the
geometry of the manifold (Fig. 2(a)) that we subsequently
learn. Here, we choose the joint space configuration,q, that
minimizes the absolute sum of joint angles, in a different
view it minimizes the distance to a convenience (robot
default or minimum strain) pose,qc = (0, 0, 0), with a joint
weighting. Formally,

min ‖wq− qc‖
2
, subject tof(q)− x = 0,

wherew is a weighting vector,f is the forward kinematics
and x is the goal endpoint position on the plane. We set
w = (4, 2, 1), which means that the cost of the first joint
offset will be four times as significant as the last joints angle,
thus penalizing more its motion.

The resultingq’s trace a smooth nonlinear manifold in
joint space, depicted in Fig. 2(a). We note that the manifold



−0.5 0 0.5 1 1.5 2 0
1

2

0.5

1

1.5

2

2.5

q
2
(rad)

Manifold surface

q
1
(rad)

q 3(r
ad

) −0.5 0 0.5

0.2
0.4
0.6
0.8

x(m)

y(
m

)

Samples

(a) Samples.

0
1

2 0
1

2

0

0.5

1

1.5

2

2.5

q
2
(rad)

Tangent space basis

q
1
(rad)

q 3(r
ad

) −0.5 0 0.5

0.2
0.4
0.6
0.8

x(m)

y(
m

)

Neighborhood graph

(b) Learnt manifold.

−0.5 0 0.5 1 1.5 2 0
1

2

0.5

1

1.5

2

2.5

q
2
(rad)

Geodesic paths

q
1
(rad)

q 3(r
ad

) −0.5 0 0.5

0.2

0.4

0.6

0.8

x(m)

y(
m

)

Task space

(c) Generated geodesic paths.
Fig. 2. The manifold learning and usage for the 3link arm example. a) Starting with 100 datapoints in joint space, that correspond to task space coordinates
as in the inset plot. b) The neighborhood graph in task space (inset plot), and the learnt tangent space that the model predicts for the RBF centers in the
high dimensional space. c) Randomly sampled optimal (unconstrained) geodesic paths and corresponding task space trajectories in the inset plot. The thin
gray trimesh is a densely sampled reconstruction of the underlying surface, used only for comparison and as a visualizationaid.

surface resembles a convex strip that bends backwards to-
wards the edges, much like a section cut of a bent tube. This
is the surface that points of the specific optimality criterion
trace. Also different redundancy resolution strategies would
produce different optimality manifolds. We note that, in
general, this kind of information is not explicitly known (in
the case of human demonstration) or even visualizable, for
many complex problems.

B. Implementation

We start by computing the neighborhood graph of the
dataset points. We do this by evaluating the task space dis-
tances as the forward kinematics of the system are known. As
we require that our set consists of one connected component,
we gradually increase the neighborhood distance until no
disconnected subsets exist. The resulting neighborhood graph
is depicted in Fig. 2(b)(inset plot).

After visualizing the optimality surface we can conclude
that the manifold can be naturally represented with a two
dimensional tangent space, and we learn a model ofHθ

with 10 RBFs. We can subsequently evaluateHθ at any
point in our joint space. For example Fig. 2(b) shows the
tangent basis evaluated at the centers of the RBFs used. Note
that the basis vectors are aligned and vary smoothly, i.e. we
obtain good generalization within the region of support of the
data. This way, in order to“walk” on the manifold we need
to evaluate the learned tangent basis and follow eachlocal
frame for each consecutive step, in other words follow the
blue and green arrows of Fig. 2(b) for each point in question.

C. Results

Once we have learnt a model of the manifold tangent
basis we have access to the geometric properties of the
surface. Subsequently the geometry of the manifold can
be used to generate optimal geodesic paths. The procedure
for generating these unconstrained paths was described in
section II-B, and the key advantage is that the generated
paths will be of shortest distance and adhere to the manifold
geometry. Optimal geodesic paths generated from randomly
sampled start and end points are depicted in Fig. 2(c),
where the manifold geometry is also plotted (thin gray
trimesh) for comparison. Note how the generated paths trace
the underlying manifold geometry while also minimizing
the deviation from a straight line connecting start and end
points (non-geodesic minimum distance). The resulting task
space trajectories –the geodesic paths run through forward
kinematics– are also displayed in the inset plot at the same

−0.5 0 0.5 1 1.5 2 0
1

2

0.5

1

1.5

2

2.5

q
2
(rad)

 #3

Constrained geodesic paths

q
1
(rad)

 #2

 #1

q 3(r
ad

)

−0.4−0.2 0 0.2 0.4 0.6

0.4

0.6

 #1

 #2
 #3

x(m)

y(
m

)

Task space avoidance

Fig. 3. Example geodesic trajectories that avoid point set obstacles on the
learnt manifold. The constrained geodesic trajectories arein blue, and the
unconstrained versions are in red.

figure. Note that the resulting task space trajectories are
curved, an interesting observation discussed in the next
subsection. In most realistic scenarios, we need more control
over the geodesic paths that we generate. We would like to be
able to specify patches on the manifolds that we would like
the generated paths to avoid, while preserving their geodesic
properties. This is accomplished by the procedure detailed
in section II-C, and results are depicted in Fig. 3. We start
with a set of random start and end points and pick a list
of obstacle points that intersect the manifold. In Fig.3 the
points to be avoided appear as red circles, and effectively
trace a patch that can be viewed as a“no-go” region on
the manifold. The red lines are the predicted geodesic paths
that travel through the obstacle regions. The blue lines are
the constrained geodesic paths that are optimized with the
obstacle patches in consideration. The resulting task space
behaviour for this set of examples is visualized in the inset
plot of the same picture.

D. Remarks

One interesting observation, regarding the shape of the
task space trajectories generated by geodesic paths, is that
the shortest path in the 3 dimensional joint space would
be a straight line connecting the start and end points. The
optimal geodesic paths are the joint space trajectories that
connect start and end points and minimize the deviation
from a straight line with respect to the manifold geometry.



−5

0

5

−12−11
−10

0

1

2

3

4

5

6

7

y(cm)
x(cm)

z
(c
m
)

−5
0

5
−12−11−10

0

2

4

6

y(cm)x(cm)

z
(c
m
)

(a) Right foot training set

−5

0

5

10 11
12

0

1

2

3

4

5

6

7

y(cm)
x(cm)

z
(c
m
)

−5
0

5
101112

0

2

4

6

y(cm)x(cm)

z
(c
m
)

(b) Left foot training set
Fig. 4. The neighborhood graph, computed for a dataset of 500 points
for each swing leg. Both plots show the swing foot midpoint position in
task space. The inset plots show the corresponding continuous trajectories
in task space.

Now, the manifold is the surface defined as the union of all
joint space paths that are optimal with respect to a specific
redundancy resolution strategy. These are shortest paths that
satisfy the optimality requirements implicitly encoded. In our
scenario, the predicted trajectories would be composed of a
series of points that minimize the sum of joint angles , thus
the task space trajectories would be subsequently optimized
with respect to minimum angular change.

Another point is that the generation of geodesic paths is
more efficient – andmuch faster– than numerical optimiza-
tion as described in section III-A (as also in [2]). One current
limitation is that the start and end points used, are assumed
to lie on the manifold surface for our experiments. These
points are currently generated by the numerical optimization
strategy. Once the manifold has been learnt, one could search
efficiently for a target point that satisfies the task space goals.
In practice, only the goal point has to be searched for and
located on the manifold as the start point would already be
the current position of the robot.

IV. EXPERIMENTS ON A HUMANOID ROBOT

The three-link arm experiments are useful for demonstrat-
ing the working of the manifold learning and constrained
optimal geodesic path planning algorithm. Next, we move to
our main example, a humanoid robot. This example allows
us to demonstrate an intuitive example of a skill manifold.
Our experiments are based on theNao (Fig. 7) humanoid
robot, popularly known as the chosen robot for theStandard
Platform Leaguein RoboCup. TheNao is approximately half
a meter tall and weights4.3kg. It has an 500MHz AMD
Geodeprocessor onboard, running embedded Linux. It has
25 DoFs and a variety of sensors. From the point of view
of motion synthesis, it is an inherently unstable system, with
an elevated center of mass.

We do not have an analytical model of the dynamics of the
system. Even if we were to develop an approximate model,
it would need to account for varying model parameters, e.g.
change in the motor behaviour as the battery gets depleted
or motor temperatures vary. Such effects are very hard to
capture analytically, although they do matter in practice.So,
we prefer to work directly from experimental data. However,
we do use a model of the robot kinematics for calculating
the relevant foot and pelvic positions in global coordinates.

We focus on the task of walking, with the aim of generat-
ing a motion synthesis strategy that achieves full coverageof
a reasonably large interval in step length, width and height. In
effect, the optimality surface would be the set of all solutions
to all possible task space queries, thus a tangent space point
would have a local coordinate frame that guides the path in
that particular neighborhood. We begin with a redundancy

−5

0

5
−12

−10

0

1

2

3

4

5

y(cm)
x(cm)

z
(c
m
)

(a) Generated right foot traj.

−5

0

5

10
12

0

1

2

3

4

5

y(cm)
x(cm)

z
(c
m
)

(b) Generated left foot traj.
Fig. 5. Generated task space trajectories from randomly sampled start and
end points. The trajectories correspond to swing foot midpoint trajectories
in task space and are stable on the robot.

resolution strategy that would yield walking examples as
training data for manifold learning.

A. Training data

We frame the redundancy resolution strategy as a con-
strained nonlinear optimization problem. Algorithmically, we
use a sum of squares (SoS) approach that uses the trust-
region-reflective algorithm.

The optimization problem is of the form,
min
q
J (q), J = J1(q) + . . .+ Jn(q),

subject tof(q)− x = 0,
whereJ is the cost function that is composed of a number
of cost factorsJn, f is the forward kinematics andx is goal
task space positions. The cost function is a mixture of task
constraints and stability constraints. The cost function we
used for data generation evaluates:

• distance between swing foot and goal
• alignment between swing foot and x/y versors
• deviation in pelvis position
• alignment between waist and z versor

The initial pose for the numerical optimization algorithm is
a default robot initialization pose with slightly bent knees.

To generate a walking trajectory we start with the desired
task space path of the swing leg and the position of the pelvis,
and discretize to 10 points. The swing foot trajectories are
straight lines from start to goal points while the height of the
foot is regulated with a sinusoid with varying apex height.
In practice we set the position of the pelvis to be over the
support foot and perform a double support weight shift step
once the swing leg has reached the goal position. Lastly, we
run the optimization procedure described earlier, and get the
joint space trajectory of the leg swing and the weight swift
phases for each complete task space step path.

The optimization results are approximately constant speed
quasi-static trajectories, in the sense that inertial effects are
negligible. We collected 50, full body, joint space trajectories
for stepping with the right leg and the same amount for
stepping with the left leg. Start and goal points of every step
have been randomized within a reasonable reaching distance.
The inset plots of Fig. 4(b) and 4(a) show the task space
trajectories of each swing leg foot midpoint, by running the
datasets through the forward kinematics of the system.

B. Implementation

Compared to our previous example, this is a higher
dimensional space and sampling is necessarily somewhat
sparse. Of the 25 DoFs of the robot, we focus on the 12
DoFs for legs and hips, keeping the arm and head joints
at a constant pose. Furthermore we separate each footstep
into a swing phase and a weight shift phase. This way we
divide the learning process into two components, leg swing



−5

0

5

−14
−12

−10

0

1

2

3

4

y(cm)

Constrained right step examples

x(cm)

z
(c

m
)

−5 0 5
0

2

4

x(cm)

z
(c

m
)

−8
−6

−4
−2

0
2

4
6

8 1010.51111.5

0

1

2

3

4

5

y(cm)

x(cm)

Constrained left step examples

z
(c

m
)

−5 0 5
0

2

4

x(cm)

z
(c

m
)

Fig. 6. Generated constrained task space trajectories fromrandomly
sampled start and end points. The red trajectories correspond to the original
unconstrained foot midpoint that collide with the obstacle (red circle). The
resulting optimized constrained task space trajectories plotted in blue.

manifold and support weight shift manifold - as the measure
of optimality is essentially different for each phase.

We begin with the same neighborhood graph computation
procedure where we gradually increase the neighborhood
distance until the graph is not disconnected (Fig. 4(b) and
4(a)). We set the dimensionality of the manifolds to be 4,
with a simple cross validation step that penalizes model
complexity while producing stable and reasonable results.In
all learnt manifolds we used models with 20 RBFs, and 500
data points that belong to 25 random task space trajectories
as described in the previous section.

C. Results

The learnt manifolds are able to produce smooth walking
trajectories that satisfy the optimization criteria used to pro-
duce the training data. Moreover, trajectories are produced
approximately withinone to two seconds, in contrast to
the numerical optimization used to generate the data which
required on average approximately45 secondsper trajectory,
both with reasonable code and on commodity hardware.
The computation time of the former increases with the
dimensionality of the manifold.

The procedure is able to produce stable walking in the
continuum of the reachable space of the robot as depicted
in Fig. 5(a) and 5(b) for right and left swings accordingly.
One interesting observation is that the robot manufacturer
in the accompanying software for walking, specifies that the
stepping space of the feet cannot extend more than 9cm.
With our manifold trajectory generation we are able to step
further and reach stably up to 12cm, nonetheless most of our
experimental sampling was constrained to be up to 10cm.

One point to note is that the shape of the generated
trajectories in task space is qualitatively different fromthe
training data. The training data is generated by point-by-point
kinematic optimization of an artificially imposed sinusoidal
sequence of task space points. By fitting the tangent space

Fig. 7. Nao executing of a planned motion.Top; the unconstrained stepping
trajectory that hits an obstacle (the ball).Bottom; the constrained optimized
trajectory where the swing path avoids the obstacle, the ball.

Fig. 8. Detail of a left foot swing.Top; the original trajectory that provides
minimal foot clearance (approx. 2cm on apex).Bottom; adding a obstacle
close to the original trajectory pushes the optimization to higher stepping
trajectories (here approx. 5cm on apex).

of the manifold to the collection of all such data points, and
making all local frames consistent, we extract a manifold
that indeed traces the true underlying geometry that the
optimization procedure sculpts in the robot joint space.

The above examples correspond to trajectory generation in
an unconstrained scenario. As with the 3-link arm example
we randomly pick a set of start and end points in task space,
generate a trajectory as a geodesic path on the learnt skill
manifold and insert an obstacle near the trajectory. Examples
of this process are depicted on Fig. 6 for right and left foot
midpoint task space trajectories. Note that the dashed red
lines correspond to the unconstrained predictions that collide
with the perceived obstacles, that appear as red circles.

The efficacy of such an additional degree of control
is obvious. To provide a concrete example we have used
the constrained geodesic trajectory generation for random
obstacle avoidance, staying away from regions in task space
that might interfere with the swing trajectory. In the case
of going up or down a step, it is often the case that the
foot collides with the previous or next step’s edge. When
such a collision occurs, the robot loses its balance and falls
down. Now, we can detect this collision and set this point
to be a “no-go” point in a point set. In the same state
the robot will then skillfully avoid the colliding pose and
successfully negotiate the step. The accompanying video
provides a number of such examples. Snapshots of such
behaviour are also shown in Fig. 7 and 8.

V. CONCLUSIONS AND FUTURE WORK

We present an approach to constrained trajectory gener-
ation over a manifold that compactly encodes a continuous
family of trajectories corresponding to a robotic skill. This



skill manifold is learnt from demonstration data by approx-
imating the tangent space. Having this manifold along with
the local coordinate frames in the form of the tangent space
enables efficient ways to handle changing task contexts and
obstacles, while respecting intrinsic requirements of thetask.

We demonstrated these ideas on two sets of examples
- a simulated robotic arm, suitable for visually illustrating
core concepts and a humanoid robot behaviour, constrained
variable step-length walking. We have demonstrated that
the manifolds, defined by solutions to a complex numerical
optimization problem, can be learnt from sparse data and that
the geometric structure generalizes within and beyond the
support of the data. This enables motion synthesis methods
where one is able to lazily compute trajectories in responseto
changing task specifications (perhaps including additionsto
the underlying cost function expressions) by the constrained
geodesics that intrinsically respect the partial specifications
that define the essence of the underlying task.

REFERENCES

[1] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and
T. Kanade, “Footstep planning for the honda asimo humanoid,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, April 2005.

[2] I. Havoutis and S. Ramamoorthy, “Geodesic trajectory generation on
learnt skill manifolds,”Robotics and Automation, 2010. ICRA 2010.
Proceedings 2010 IEEE International Conference on, 15-19, 2010.

[3] S. Ramamoorthy and B. J. Kuipers, “Trajectory generation for dynamic
bipedal walking through qualitative model based manifold learning,”
IEEE International Conference on Robotics and Automation (ICRA),
pp. 359–366, May 2008.

[4] P. Isto and M. Saha, “A slicing connection strategy for constructing
prms in high-dimensional cspaces,”Robotics and Automation, 2006.
ICRA 2006. Proceedings 2006 IEEE International Conferenceon, pp.
1249–1254, May 2006.

[5] A. Safonova, J. K. Hodgins, and N. S. Pollard, “Synthesizing phys-
ically realistic human motion in low-dimensional, behavior-specific
spaces,”ACM Trans. Graph., vol. 23, no. 3, pp. 514–521, 2004.

[6] D. Berenson, S. Srinivasa, D. Ferguson, and J. Kuffner, “Manipulation
planning on constraint manifolds,” inIEEE International Conference
on Robotics and Automation (ICRA ’09), May 2009.

[7] M. Stilman, “Task constrained motion planning in robot joint space,”
Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-
tional Conference on, pp. 3074–3081, 29 2007-Nov. 2 2007.

[8] T. Bretl, S. Lall, J.-C. Latombe, and S. Rock, “Multi-stepmotion
planning for free-climbing robots,” inin WAFR, 2004, pp. 1–16.

[9] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process
dynamical models for human motion,”IEEE Trans. Pattern Anal.
Mach. Intell., vol. 30, no. 2, pp. 283–298, 2008.

[10] S. Bitzer, I. Havoutis, and S. Vijayakumar, “Synthesising novel move-
ments through latent space modulation of scalable control policies,”
in Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2008, pp. 199–209.

[11] S. Calinon and A. Billard, “Statistical learning by imitation of com-
peting constraints in joint space and task space,”Advanced Robotics,
vol. 23, pp. 2059–2076, 2009.

[12] P. Dollár, V. Rabaud, and S. Belongie, “Non-isometric manifold
learning: Analysis and an algorithm,” inICML, June 2007.

[13] O. C. Jenkins and M. J. Mataric, “A spatio-temporal extension to
isomap nonlinear dimension reduction,” inIn International Conference
on Machine Learning (ICML), 2004, pp. 441–448.

[14] T. Hastie, R. Tibshirani, and J. H. Friedman,The Elements of Statis-
tical Learning. Springer, August 2001.


