# **Motion Synthesis on Learned** Skill Manifolds

#### **Ioannis Havoutis, Subramanian Ramamoorthy**

### Motivation

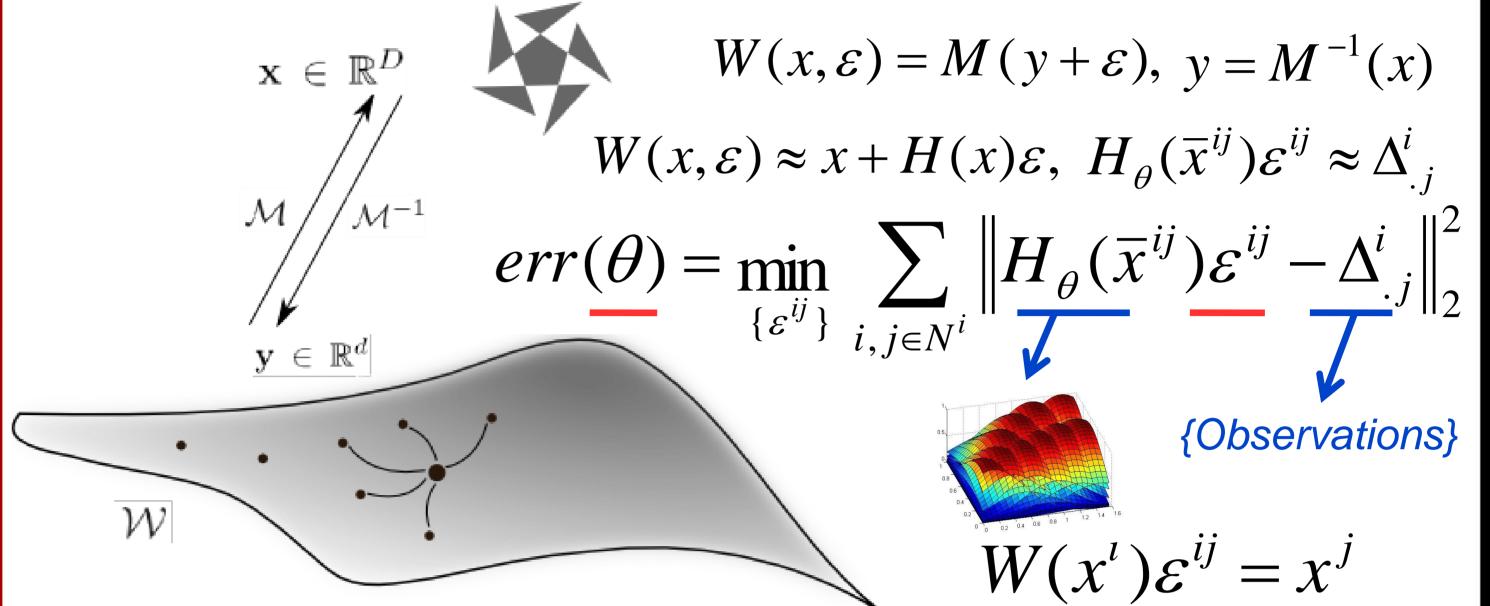
Humanoid robots are extremely flexible and complex platforms. We want them to be able to exhibit a variety of dynamical behaviours subject to:

- Task constraints
  - (Feasibility)
- Large disturbances (Reactive planning)

# From Data to Manifold

Demonstration data are drawn from an underlying skill manifold, learned using a manifold learning algorithm (Locally Smooth Manifold Learning [2]). LSML allows for geometric operations as:

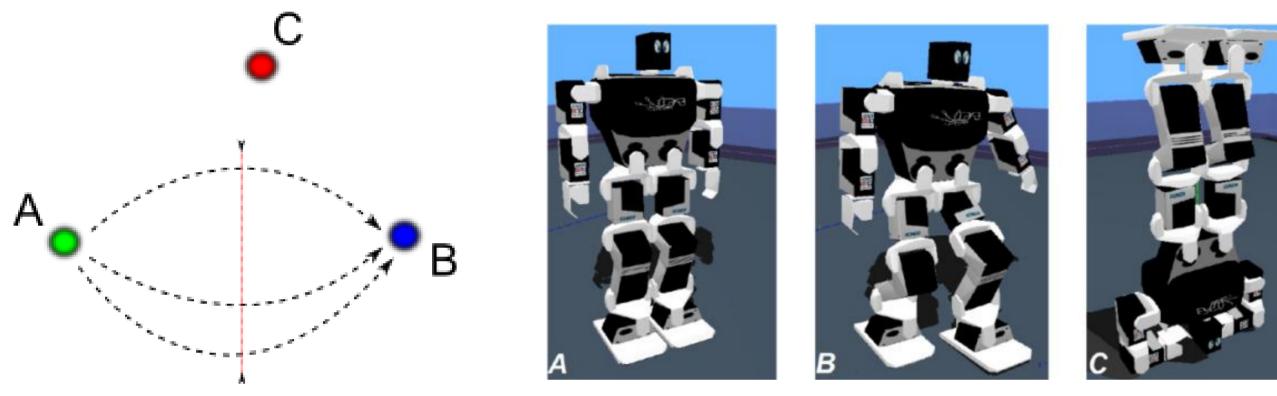
- Projection onto manifold
- Geodesic paths and distances



For this we need a flexible motion representation that would allow us to handle the complexity of the environment and the inherent complexity of the system.

## How to represent Skills?

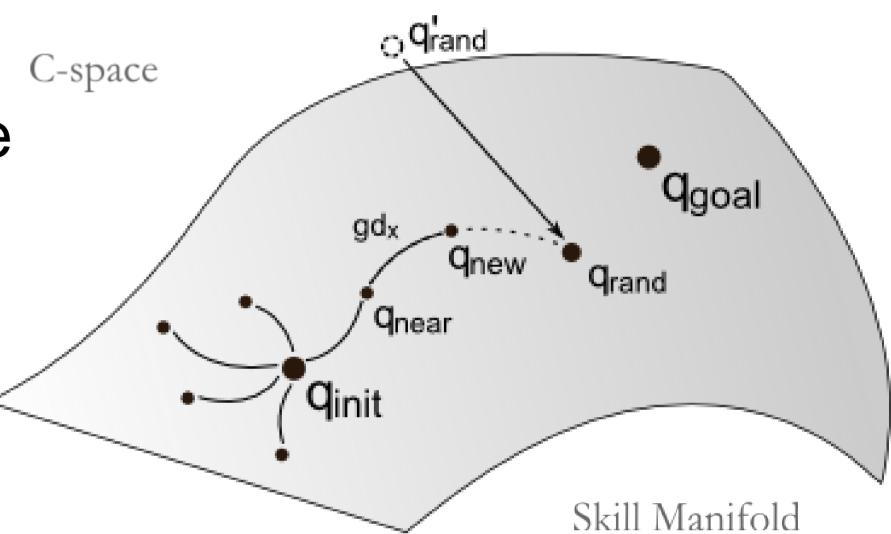
Families of paths in state space defined by system and task constraints.



- Span an a priori unknown subspace of lower intrinsic dimensionality that we want to :
  - Capture from demonstration data

### **mRRT:** Motion planning on manifolds

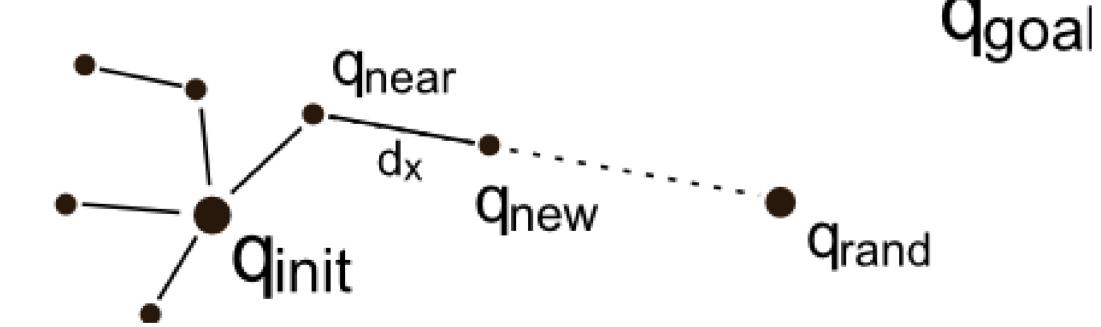
Leveraging skill*relevant* knowledge in the form of a learned manifold into the planning process [3] we:



Bias exploration towards <u>known good solutions</u>

Leverage for motion planning

#### **Sampling based motion planning** Rapidly-exploring random trees [1] is one of the most successful sampling based motion planning algorithms. Part of its success can be attributed to the computational simplicity and fast explorative nature.



- Sampling gets increasingly wasteful as the dimensionality of the space increases, especially when high-dim paths lie on a structured subspace.
- Exploration does not take into account task

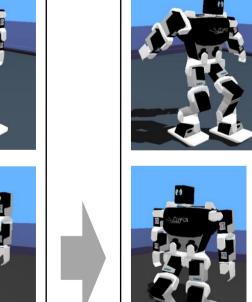
*Focus exploration* where it really matters

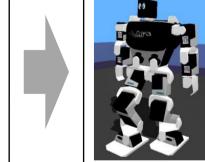
# Results

Start from three demonstrated trajectories for each of the three tasks (step forward, kick, step backward) (step forward, kick, step backward)

10 trials for each task/algorithm

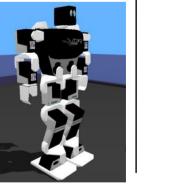








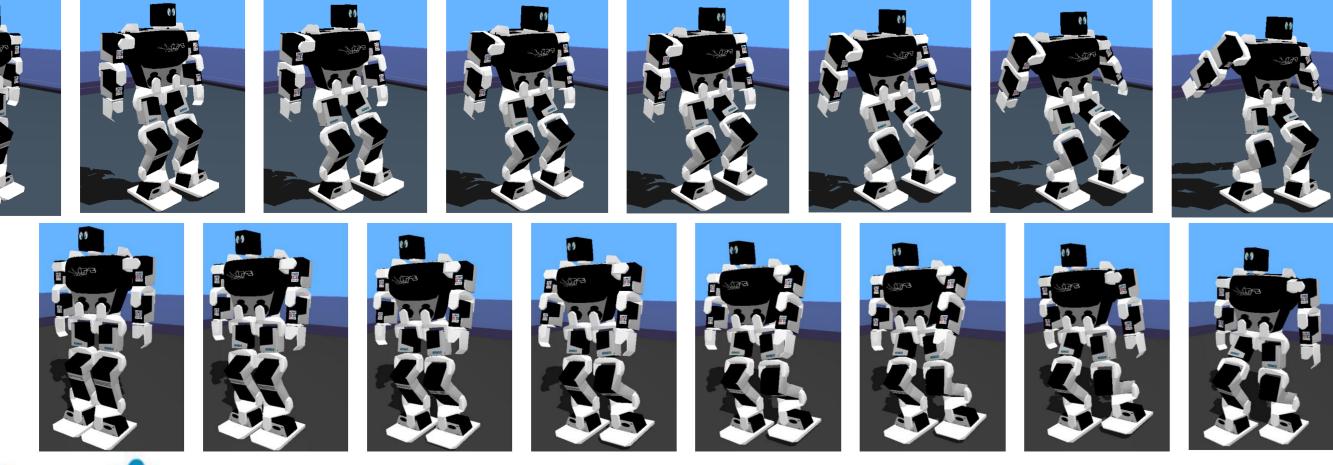
• 57.6% less invalid samples



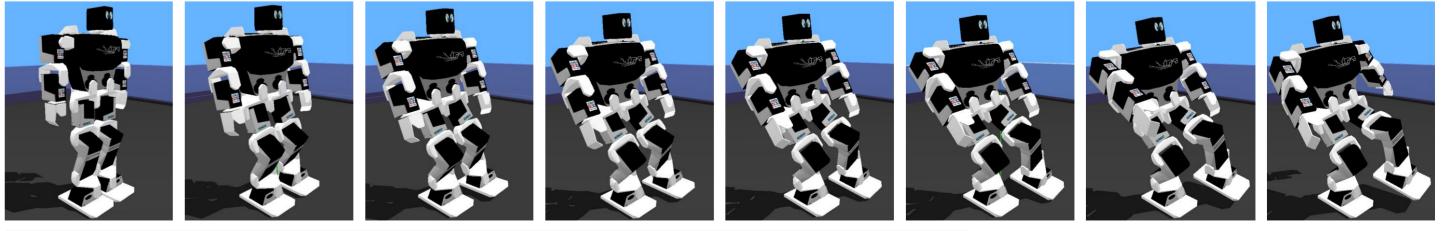


- 25.2% decrease in overall planning steps
- Why pay the computational cost of *mRRT*?
- Representation that captures all feasible solutions
- Enables *layered strategies*
- Basis for **Optimal Control** over manifold

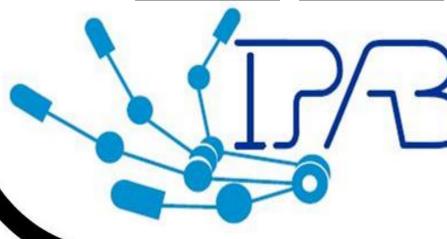
#### constraints or demonstrated data.



#### **Composition** of skill-manifolds



| Task                              |        | step   |        | kick   |        | backstep |
|-----------------------------------|--------|--------|--------|--------|--------|----------|
|                                   | cRRT   | mRRT   | cRRT   | mRRT   | cRRT   | mRRT     |
| Average path length               | 40.9   | 38     | 52.5   | 49.4   | 47.2   | 37.5     |
| Average number of samples         | 268.63 | 199.2  | 291    | 249.3  | 293.4  | 189.8    |
| Average tree size                 | 127.7  | 127    | 140.3  | 137.7  | 120.7  | 108.4    |
| Average number of invalid samples | 140.6  | 74.4   | 150.7  | 111.6  | 172.7  | 81.4     |
| $Smoothness \{nRMSE\}$            | 0.0051 | 0.0049 | 0.0055 | 0.0041 | 0.0046 | 0.0043   |



References: [1] LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge, U.K. (2006) [2] Dollar, P., Rabaud, V., Belongie, S.: Learning to traverse image manifolds. In: NIPS. (Dec. 2006)

[3] Havoutis, I., Ramamoorthy, S.: Motion synthesis through randomized exploration on submanifolds in configuration space. In Proc. RoboCup International Symposium, Lecture Notes in Artificial Intelligence, Springer Verlag, 2009

