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Abstract. Multiple model approaches to the control of complex dynamical sys-
tems are attractive because the local models can be simple and intuitive, and
global behavior can be analyzed in terms of transitions among local operating re-
gions. In this paper, we argue that the use of qualitative models further improves
the strengths of the multiple model approach by allowing each local model to de-
scribe a large class of useful non-linear dynamical systems. In addition, reasoning
with qualitative models naturally identifies weak sufficient conditions adequate
to prove qualitative properties such as stability. We demonstrate our approach by
building a global controller for the free pendulum. We specify and validate lo-
cal controllers by matching their structures to simple generic qualitative models.
This process identifies qualitative constraints on the controller designs, sufficient
to guarantee the desired local properties and to determine the possible transitions
between local regions. This, in turn, allows the continuous phase portrait to be
abstracted to a simple transition graph. The degrees of freedom in the design that
are unconstrained by the qualitative description remain available for optimization
by the designer for any other purpose.

1 Introduction

Multiple model approaches to the control of complex dynamical systems are attrac-
tive because the local models can be simple and intuitive, and global behavior can be
analyzed in terms of transitions among local operating regimes [1].

In this paper, we argue that the use of qualitative models further improves the
strengths of the multiple model approach by allowing each local model to describe a
large class of useful non-linear dynamical systems [2]. In addition, reasoning with qual-
itative models naturally identifies weak sufficient conditions adequate to prove qualita-
tive properties such as stability. Since a qualitative model only constrains certain aspects
of a real system, the remaining degrees of freedom are available for optimization ac-
cording to any criterion the designer chooses.
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We use the QSIM framework for representing qualitative differential equations (QDEs)
and doing qualitative simulation to predict the set of all possible behaviors of a QDE
and initial state [2]. A QDE is a qualitative abstraction of a set of ODEs, in which the
domain of each variable is described in terms of a finite, totally ordered set oflandmark
values, and an unknown function may be described in terms of regions of monotonic
behavior and tuples of corresponding landmark values it passes through. Qualitative
simulation predicts a transition graph of qualitative states guaranteed to describe all so-
lutions to all ODE models consistent with the given QDE. By querying QSIM output
with a temporal logic model-checker, we can prove universal statements in temporal
logic as theorems about sets of dynamical systems described by the QDE [3].

Because it is consistent with nonlinear models, a simple and intuitive QDE model
can cover a larger region of the state space than would be possible for a linear ODE.
Because a QDE model can express incomplete knowledge, it can be formulated even
when the model is not fully specified, and it can express sufficient conditions for a
desired guarantee while leaving other degrees of freedom unspecified. These properties
are helpful in abstracting the continuous state space of the system to a compact and
useful transition graph.

1.1 Abstraction from Continuous to Discrete States

The discrete transition-graph representation is important for reasoning about large-scale
hybrid systems, because it allows the analyst to focus on which large-granularity state
the system is in rather than on its detailed dynamics. The representation facilitates anal-
ysis of the system using temporal logic and automata theory [4], and building hierar-
chical representations for knowledge of dynamics [5].

We decompose the state space into a set of regions with disjoint interiors, though
boundary points may be shared. To be useful, the description of the dynamical system,
restricted to each region, should be significantly simpler than the description of the
global system. Each region is then abstracted to a node in the transition-graph model.

A transition from one node to another represents the existence of a trajectory be-
tween the corresponding regions through their common boundary in the continuous
state space. Consider the set of continuous trajectories with initial states in the region.
If all of those trajectories stay within the region, then the abstracted node has no out-
going transitions. If some trajectories cross the region’s boundary and pass into other
regions, then the abstracted model includes transitions to each of the corresponding
nodes.

QSIM predicts all possible behaviors of a system, given a QDE model and a qual-
itative description of its initial state. Therefore, if the region can be characterized by a
qualitative description, and if the dynamical system restricted to that region can be de-
scribed by a QDE, then qualitative simulation can infer the corresponding transitions.

Qualitative modeling and simulation is not a “magic bullet” for proving properties
of arbitrary nonlinear and heterogeneous systems. However, it does provide a much
more expressive language for describing the qualitative and semi-quantitative proper-
ties of classes of non-linear dynamical systems, and inferring properties of the sets of
all possible behaviors of those systems. It provides more flexibility and power for a de-



signer to specify intended properties of a dynamical system. It also provides tools for
proving that a qualitatively specified design achieves its desired goals.

1.2 Example: the Free Pendulum

The free pendulum (Figure 1) is a simple but non-trivial non-linear dynamical system.
The task of balancing the pendulum in the upright position is widely used as a textbook
exercise in control, and as a target for machine learning methods that learn dynami-
cal control laws. The inverted pendulum is also an important practical model for tasks
ranging from robot walking to missile launching.

We demonstrate our approach by building a global controller for the free pendulum.
We specify and validate local controllers by matching their structures to simple generic
qualitative models. The qualitative framework of QSIM allows us to generalize simple
familiar systems like the damped harmonic oscillator (“damped spring”), by replacing
linear terms with monotonic functions. Either by using QSIM or analytically (as we
do in this paper), it is not difficult to prove useful qualitative properties of the damped
spring and important variants such as the spring with negative damping.

There is an open-ended set of local models that have desirable properties to be
incorporated into a heterogeneous hybrid model. We explore some simple but useful
examples here. The set of useful transitions among local models is also currently open-
ended, but may turn out in the end to be finite, at least under qualitative description. We
provide some useful examples here, but no suggestion yet about the limits of such a set.

This process identifies qualitative constraints on the controller designs, adequate to
guarantee the desired local properties and to determine the possible transitions between
local regions. This, in turn, allows the continuous phase portrait to be abstracted to a
simple transition graph.

2 Qualitative Properties of Damped Oscillators

Before addressing the pendulum, we need to prove a couple of useful lemmas about the
properties of two generic qualitative models: the spring with damping friction and the
spring with negative damping.

Consider the familiar mass-spring system. The key fact about springs is Hooke’s
Law, which says that the restoring force exerted by a spring is proportional to its dis-
placement from its rest position. Ifx represents the spring’s displacement from rest,
then

F = ma = m�x = �k1x:

We add a damping friction force to the linear model by adding a term proportional
to _x and opposite in direction. (Real damping friction is often non-linear.)

F = ma = m�x = �k1x� k2 _x:

Rearranging and renaming the constants, we get a linear model of the damped
spring:

�x+ b _x+ cx = 0: (1)



The linear model is easy to solve, but it embodies simplifying assumptions that are
often unrealistic. By generalizing linear terms in equation (1) to monotonic functions,
and allowing the functions to be described qualitatively rather than specified precisely,
we get a model

�x+ f( _x) + g(x) = 0

that encompasses a large number of precise ODE models, including ones that are much
more realistic descriptions of the world.

To make qualitative simulation possible, we must restrict our attention to “reason-
able” functions, which are defined below along with some useful concepts for express-
ing qualitative models.

Definition 1. Where[a; b] � <�, the functionf : [a; b] ! <� is a reasonable function
over[a; b] if

1. f is continuous on[a; b],
2. f is continuously differentiable on(a; b),
3. f has only finitely many critical points in any bounded interval,
4. The one-sided limitslimt!a+ f

0(t) and limt!b� f
0(t) exist in<�. Definef 0(a)

andf 0(b) to be equal to these limits.

Definition 2. M+ is the set of reasonable functionsf : [a; b] ! <� such thatf 0 > 0
over(a; b).

Definition 3. M+

0 is the set off 2M+ such thatf(0) = 0.

Definition 4. [x]0 = sign(x) 2 f+; 0;�g.

Here we establish the important qualitative properties of the monotonic “damped
spring” model.

Lemma 1. LetA � <2 include(0; 0) in its interior, and letS be a system governed by
the QDE

�x+ f( _x) + g(x) = 0 (2)

for every(x; _x) 2 A, wheref andg are reasonable functions such thatf 2 M+

0 and
[g(x)]0 = [x]0. Then for any trajectory(x(t); _x(t)) of S that lies entirely withinA,

lim
t!1

(x(t); _x(t)) = (0; 0):

Proof: We rewrite equation (2) as

_x1 = f1(x1; x2) = x2
_x2 = f2(x1; x2) = �f(x2)� g(x1)

(3)

Becauseg is a reasonable function, we know thatg0(0) is defined. Since[g(x)]0 =
[x]0, we conclude thatg(0) = 0 andg0(0) > 0. Any fixed-point of equation (3) must
satisfy _x1 = _x2 = 0, which implies that the only fixed point is atx1 = x2 = 0.



By the stable manifold theorem [6], the qualitative behavior of the nonlinear system
(3) around the fixed point at(0; 0) is the same as that of its local linearization:

_x1 = x2
_x2 = �f 0(0)x2 � g0(0)x1

(4)

The eigenvalues of (4) are

�1;2 =
1

2

h
�f 0(0)�

p
f 0(0)2 � 4g0(0)

i
:

Becausef 0(0); g0(0) > 0, the eigenvalues have negative real parts, so(0; 0) is an
asymptotically stable fixed point. When the “friction force” termf 0 is small relative to
the “spring force” termg0, the eigenvalues will be complex, in which case(0; 0) will be
a spiral attractor.

Because[g(x)]0 = [x]0, the “spring force” is always a restoring force, so we can
define a Lyapunov function

V (x; _x) =
1

2
_x2 +

Z x

0

g(x) dx (5)

and show thatV (x; _x) � 0, thatV = 0 only at (0; 0), and that d
dt
V � 0. This means

thatS is asymptotically stable at(0; 0), and thatA can contain no limit cycles.
Together, this tells us that any trajectory(x(t); _x(t)) that entersA eventually termi-

nates at(0; 0), for any reasonable functionsf andg such thatf 2 M+

0 and[g(x)]0 =
[x]0. ut

Now we establish similar properties for another monotonic generalization of the
“damped spring”, but with negative damping.

Lemma 2. LetA � <2 include(0; 0) in its interior, and letS be a system governed by
the QDE

�x� f( _x) + g(x) = 0 (6)

for every(x; _x) 2 A, wheref and g are reasonable functions such thatf 2 M+

0

and [g(x)]0 = [x]0. Then(0; 0) is the only fixed point ofS in A, and it is unstable.
Furthermore,A cannot contain a limit cycle.

Proof: The proof of this Lemma is very similar to the previous one. We rewrite
equation (6) as

_x1 = f1(x1; x2) = x2
_x2 = f2(x1; x2) = f(x2)� g(x1)

(7)

As before, becauseg is a reasonable function, we know thatg0(0) is defined. Since
[g(x)]0 = [x]0, we conclude thatg(0) = 0 andg0(0) > 0.

Any fixed-point of equation (7) must satisfy_x1 = _x2 = 0, so the only fixed point is
atx1 = x2 = 0.

As before, the qualitative behavior of the nonlinear system (7) around the fixed point
at (0; 0) is the same as that of its local linearization:

_x1 = x2
_x2 = f 0(0)x2 � g0(0)x1

(8)



The eigenvalues of (8) are

�1;2 =
1

2

h
f 0(0)�

p
f 0(0)2 � 4g0(0)

i
:

In this case, sincef 0(0) > 0, the eigenvalues have positive real parts, and(0; 0) is
an unstable fixed point. If the “friction force” termf 0 is small relative to the “spring
force” termg0, then the eigenvalues will be complex, so(0; 0) will be a spiral repellor.

By the Bendixon negative criterion [6], there can be no periodic orbits contained in
A because

@f1
@x1

+
@f2
@x2

= f 0(x2)

is always positive overA. That is,A cannot contain a limit cycle.
Therefore, except for the unstable fixed-point at(0; 0) itself, any trajectory(x(t); _x(t))

that starts inA, eventually leavesA, for any reasonable functionsf andg such that
f 2M+

0 and[g(x)]0 = [x]0. ut

In this context, like that of Lemma 1, we can interpretV (x; _x) from equation (5)
as representing the total energy of the system, but here we can show that energy is
increasing steadily except at isolated points.

2.1 Proof by Qualitative Simulation

These Lemmas establishing the properties of the monotonic spring models were proved
by hand to make this paper self-contained, and because these models are generic and
useful.

It is also possible to generate proofs of these and similar statements automatically
from the QSIM QDE models. The Guaranteed Coverage Theorem states that every real
behavior of every model described by the QDE is predicted by QSIM [7, 2]. Then we
can use a temporal logic model-checker to establish whether the predicted behavior
tree is a model of a specified statement in temporal logic. For universal statements,
the completeness of the model-checker and QSIM Guaranteed Coverage combine to
show that a positive response from the model-checker implies that the temporal logic
statement is a theorem for all behaviors of all dynamical systems consistent with the
given QDE [3].

This method of deriving the necessary lemmas using QSIM makes it possible to
generalize this approach to more complex models as in [8].

3 A Controller for the Pendulum

By appealing to the qualitative properties of solutions to these very general models, we
can give a simple and natural derivation for a controller for the pendulum, able to pump
it up and stabilize it in the inverted position.
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Fig. 1. Local models of the pendulum (where� = � � �): (a)� = 0 at the unstable fixed-point,
and (b)� = 0 at the stable fixed-point.

3.1 Stabilizing the Inverted Pendulum

The pendulum is a mass on a rigid, massless rod, attached to a fixed pivot. The variable
� measures the angular position counter-clockwise from the vertical (Figure 1(a)). We
consider only� 2 (��=2;+�=2).1

The angular acceleration due to gravity isk sin�, and there is a small amount of
damping friction�f( _�), wheref 2 M+

0 . A control actionu(�; _�) exerts angular ac-
celeration at the pivot. The resulting model of the pendulum is:

��+ f( _�)� k sin�+ u(�; _�) = 0: (9)

Our goal is to designu(�; _�) so that the system is asymptotically stable at(�; _�) =
(0; 0).

Lemma 1 provides a simple sufficient condition: make the pendulum behave like a
monotonic damped spring. We define the controller for theBalanceregion to be:

u(�; _�) = g(�) such that[g(�)� k sin�]0 = [�]0: (10)

Sincek sin� increases monotonically with� over (��=2;+�=2), g(�) must in-
crease at least as fast in order to ensure that[g(�)� k sin�]0 = [�]0.

We can get faster convergence by augmenting the natural dampingf( _�) with a
damping termh( _�) included in the control law, giving us

u(�; _�) = g(�) + h( _�) where[g(�)� k sin�]0 = [�]0 andh 2M+

0 ( _�): (11)

If there is a boundumax on the control actionu, then the limiting angle�max

beyond which the controller cannot restore the pendulum to� = 0 is given by the
constraint

umax = k sin�max: (12)
1 The derivation here applies over the larger interval(��;+�), but the maximum control force

is required at� = ��=2. The controller design problem is less interesting if the controller is
powerful enough to lift the pendulum directly to� = 0 from any value of�.



The maximum velocity_�max that theBalancecontroller can tolerate at� = 0 is
then determined by the constraint

1

2
_�2max =

Z �max

0

g(�)� k sin� d� (13)

which represents the conversion of the kinetic energy of the system (9) at(0; _�max)
into potential energy at(�max; 0).

Therefore, we define the region of applicability for theBalancecontroller by the
ellipse

�2

�2max

+
_�2

_�2max

� 1: (14)

Note that the shapes of the non-linear functionsg andh are only very weakly con-
strained. The qualitative constraints in (11) provide weak sufficient conditions guar-
anteeing the stability of the inverted pendulum controller. However, there is plenty of
freedom available to the designer to select the properties ofg andh to optimize any
desired criterion.

3.2 Pumping Up the Hanging Pendulum

With no input, the stable state of the pendulum is hanging straight down. We use the
variable� to measure the angular position counter-clockwise from straight down (Fig-
ure 1(b)). The goal is to pump energy into the pendulum, swinging it progressively
higher, until it reaches the region where the inverted pendulum controller can balance it
in the upright position.

Angular acceleration due to gravity is�k sin �. As before, damping friction is
�f( _�), wheref 2M+

0 , and the control action exerts an angular accelerationu(�; _�) at
the pivot. The resulting model of our system is:

�� + f( _�) + k sin � + u(�; _�) = 0: (15)

Without control action, since[sin �]0 = [�]0 over�� < � < �, the model ex-
actly matches the monotonic damped spring model of Lemma 1, so we know that it is
asymptotically stable at(�; _�) = (0; 0). Unfortunately, this is not where we want it.

Fortunately, Lemma 2 gives us a sufficient condition to transform the stable attractor
at (0; 0) into an unstable repellor. We define the controller for thePump region so that
the system is modeled by a spring with negative damping, pumping energy into the
system. That is, define

u(�; _�) = �h( _�) such thath� f 2M+

0 (16)

Starting with any perturbation from(0; 0), this controller will pump the pendulum
to higher and higher swings. Lemma 2 is sufficient to assure us that there are no limit
cycles in the region�� < � < � to prevent the trajectory from approaching� = � so
theBalancecontrol law can stabilize it in the inverted position.



3.3 The Spinning Pendulum

TheSpin region represents the behavioral mode of the pendulum when it is spinning
freely at high speed. In theSpin region, a simple qualitative controller augments the
natural friction of the system with additional damping, to slow the system down toward
the two other regions.

u(�; _�) = f2( _�) such thatf2 2M+

0 : (17)

3.4 Bounding the Pump and Spin Regions

One might ask whether thePump controller could be so aggressive that the pendulum
would overshoot theBalance region entirely. Even with augmented damping by the
Spin controller, it might be possible to get a limit cycle that alternates between the
Pump andSpin regions. (While the analogy is not perfect, this is one aspect of how the
van der Pol oscillator works.)

We can avoid this problem by defining a suitable boundary between thePump and
Spin regions, and showing that thePump andSpin controllers together define a sliding
mode controller [9], forcing nearby trajectories to converge to the boundary.

A boundary with the desired properties is the separatrix of the same pendulum,

�� + k sin � = 0 (18)

without damping friction or control action. It turns out that this boundary will lead
straight into the heart of theBalanceregion (Figure 2).
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Fig. 2. The (�; _�) phase portrait of the undamped pendulum. TheBalance region is an ellipse
around the saddle point at(�; 0). ThePump region is contained within the separatrices, and the
Spin region is outside the separatrices.

A separatrixis a trajectory that starts at an unstable fixed-point of the system and
ends at another fixed-point. In the case of the pendulum, the separatrices are the tra-
jectories where the pendulum starts upright and at rest, then swings around once and



returns to the upright position, at rest. It is the locus of points(�; _�) such that the total
energy of the system is exactly equal to the potential energy of the motionless pendulum
in the upright position.

KE + PE =
1

2
_�2 +

Z �

0

k sin � d� = 2k

Evaluating the integral and simplifying, we get an equations(�; _�) = 0 that defines
the separatrix, i.e., the boundary betweenSpin (s > 0) andPump (s < 0).

s(�; _�) =
1

2
_�2 � k(1 + cos �) = 0: (19)

We use the method for defining a sliding mode controller from [9] to ensure that
trajectories always approachs = 0.

Differentiating (19) and substituting for��, we get:

_s = _� �� + k sin � _�

= _� (�f( _�)� k sin � � u(�; _�)) + k sin � _�

= � _�f( _�)� _� u(�; _�)

Now, examine thePump region, inside the separatrix wheres < 0, and substitute
thePump control law (16) foru(�; _�).

_spump = � _�f( _�) + _� h( _�) whereh� f 2M+

0

= _� (h� f)( _�)

� 0

Similarly, for theSpin region wheres > 0, substituting its control law (17).

_sspin = � _�f( _�)� _�f2( _�) wheref2 2M+

0

= � _�(f + f2)( _�)

� 0

This shows that thePump control law moves the system toward the separatrix from
the inside, and theSpin control law approaches the separatrix from the outside: the
existing control laws define a sliding mode controller with the separatrixs = 0 as
the attractor. Once the system gets sufficiently close to the boundary, it will follow
the separatrix, directly into theBalance region. In particular, it is impossible for an
aggressivePump controller to overshoot theBalanceregion.

3.5 Heterogeneous Control of the Free Pendulum

We have derived local control laws for the three relevant regions. The region definition
for Balancetakes priority over the defining relations forPump or Spin.



– Balance: (�; _�) � (0; 0), more precisely�2=�2max + _�2= _�2max � 1 from equation
(14). Stabilize the unstable saddle by adding a “spring-like” attractive force:

u(�; _�) = g(�) + h( _�) such that[g(�)� k sin�]0 = [�]0 andh 2M+

0 ( _�):

– Pump: s(�; _�) < 0, wheres is defined in equation (19). Pump the system away
from the stable attractor at(0; 0) by adding to the controller a destabilizing “anti-
frictional” force:

u(�; _�) = �h( _�) such thath� f 2M+

0 :

– Spin: s(�; _�) > 0, wheres is defined in equation (19). Slow down a quickly spin-
ning pendulum by augmenting the (small) natural friction of the system with a
“friction-like” damping control:

u(�; _�) = f2( _�) such thatf2 2M+

0 :

We have shown that the qualitative constraints associated with each local law are
sufficient to guarantee that its local performance is as desired. We need to demonstrate
that the continuous behavior of the controlled pendulum can be abstracted to the discrete
transition model consisting of the operating regions of the controller.

Pump 6$ Spin

& .
Balance

– Pump 6$ Spin. Since the boundarys = 0 betweenPump andSpin is the attractor
for a sliding mode controller, in theory no trajectory can cross from one side of the
boundary to the other. In practice, the trajectory will “chatter” around the boundary.
The boundary can be made fuzzy to eliminate discontinuous changes in control
action, but in any case, the trajectory can be kept very close to the boundary [9].

– Pump!Balance. The discussion in section 3.4 shows thats(�; _�) increases through-
out Pump. Therefore, the maximum amplitude�max of the pendulum’s swings,
where _� = 0, must increase. Since these values are determined bys = �k(1 +
cos �max), the value of�max must increase in absolute value, toward��. Lemma
2 says thatPump contains no fixed point or limit cycle. Therefore, eventually the
extremal point(�max; 0) will lie within the region of applicability of theBalance
controller (14), which will capture the trajectory, bringing it to the fixed point at
(�; _�) = (�; 0) (i.e.,(�; _�) = (0; 0)).

– Spin! Balance. Similarly, we have shown thats(�; _�) decreases throughoutSpin.
Therefore, the minimum velocity_�min, which occurs where� = � (i.e.,� = 0),
must also decrease in absolute value. The extremal point(�; _�min) will eventually
fall within the region of applicability of theBalancecontroller (14), which will
capture the trajectory and bring it to the desired fixed-point.

– Balance. Lemma 1 guarantees that, once the system’s trajectory entersBalance, it
cannot leave. Therefore, there are no outgoing transitions from theBalanceregion.



Fig. 3. �(t) and _�(t) as the heterogeneous controller pumps a weakly-powered pendulum from
� = 0 to � = �.

Figure 3 shows an example behavior as a very weak controller pumps the pendulum
up from� = 0 and balances it at� = 0. We define an instance of the pendulum model
and the local control laws:

Plant : �� + c _� + k sin � + u(�; _�) = 0 c = 0:01 k = 10 umax = 4

Balance : u = (c11 + k)(� � �) + c12 _� c11 = 0:4 c12 = 0:3

Spin : u = c2 _� c2 = 0:5

Pump : u = �(c+ c3) _� c3 = 0:5

The plant model is chosen with normal gravity, slight friction, and a maximum
control action too weak to lift the pendulum directly up. The local control laws are all
linear for simplicity, though they could be designed to be nonlinear. The controllers are
defined so that the desired behavior is guaranteed as long as the parametersci are all
positive. The specific values for theci are chosen to ensure thatu < umax.

Given the maximum control actionumax and the gainc11 + k of theBalancecon-
troller, we can determine the bounds�max = 0:4 and _�max = 0:3 for the Balance
region from equations (12) and (13), respectively. We define the switching strategy to
be

If � � 1 thenBalance
else ifs < 0 thenPump
elseSpin



where

� =
�2

�2max

+
_�2

_�2max

ands =
1

2
_�2 � k(1 + cos �):

Fig. 4. The control actionu(t) shows chattering along the sliding mode.

Because of the sharp transitions among regions, the control actionu(t) “chatters”
back and forth across theSpin-Balanceinterface (Figure 4). A “dead zone” along the
boundary whereu = 0 produces a virtually identical behavior, but without chatter in
the control action. Fuzzy boundaries would presumably have the same effect.

4 Discussion

4.1 Regions with Fuzzy Boundaries

In some cases, it is convenient to have local models and corresponding regions that
overlap, or have gradual rather than sharp boundaries. Such regions can be described
by fuzzy set membership functions. In the simplest case, the continuous state space can
be decomposed intopure regions, where only one membership function is non-zero,
andoverlapregions, where two (or perhaps a small finite number of) regions have non-
zero membership functions. The dynamical system in an overlap region is the weighted
average of the overlapping local models, weighted by the values of the membership
functions.

The qualitative QDE formalism is particularly useful for representing overlap re-
gions, since not only the local models, but even more, the shapes of the membership
functions in the overlap region may be only partially known or specified. QSIM can
establish which properties of the local models, and of the overlapping membership
functions, are sufficient to guarantee that trajectories through an overlap region can
be abstracted to a transition from one pure region to another. Kuipers andÅström [8]



demonstrated this for controllers for a simple water tank and for a highly nonlinear
chemical reaction.

4.2 Feedback Linearization

Feedback linearization [10] designs a control law for a system to add a term compensat-
ing for the non-linearities in the system, making the sum linear and therefore suitable for
well-understood control methods. The problem is that this approach demands precise
knowledge of the nonlinear system.

In our qualitative method, we make the much weaker requirement that the sum of the
nonlinear system and the controller be monotonic. This may be achievable even with
incomplete knowledge of the original system, for example with bounding envelopes
around unknown functions. Incomplete knowledge in this form will reduce the remain-
ing degrees of freedom available for optimization, but it will not affect the qualitative
guarantee of stability.

4.3 Conclusions

By using qualitative models, we make it possible to express incomplete knowledge of
the dynamics of the uncontrolled plant, and to separate the properties of the controller
needed to provide qualitative guarantees from the remaining degrees of freedom that
can be used for optimization. Qualitative models can also express natural nonlinear
models, allowing the use of larger and more natural local models in a multiple-model
framework. Furthermore, QSIM can be used to prove the necessary properties of generic
qualitative models, or of the specific models that describe the controlled system. These
features are illustrated by the design of a heterogeneous controller for the free pendu-
lum.
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